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Abstract. Bipartite matching problems play a crucial role in various 
software engineering tools, including resource allocation and task assign-
ment. In this paper, we address a specific variant of the bipartite match-
ing problem, called the Double Assignment Problem (DAP), focusing on 
the allocation of machines to workers in a production environment. The 
objective is to maximize the number of worker-machine associations, sub-
ject to a second, orthogonal matching problem: associating some worker 
W to a machine M implies that the (ordered) list of servers employed 
by M are dedicated to the respective programs used by the worker W . 
Since DAP is, in general, NP-hard, we introduce a heuristic that quickly 
approximates candidate results. The heuristic is called k-swap stability 
and has originally been formalized to tackle a specific DAP instance aris-
ing in the niche field of anti-unification. We extend the definition to our 
more general setting and give promising preliminary results obtained by 
applying our k-swap implementation on a testbed of examples. 

Keywords: Double Assignment Problem · combinatorial 
optimization · approximation algorithms · escape game puzzles · 
resource allocation 

1 Introduction 

In the world of combinatorial optimization, the problem of matching elements 
from two disjoint sets under certain constraints, known as the Assignment 
Problem, is fundamental and has widespread applications. This paper tackles 
a nuanced variant of this bipartite matching problem, in which the purpose 
is to optimize the allocation of machines to workers in industrial settings while 
ensuring compatibility based on machine, worker types and properties. Note that, 
while we will use the machine/worker terminology in the paper, the problem can 
arise in a range of different applications. 
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Let us first give the intuition of our Assignment Problem variant. Consider a 
bipartite graph where vertices represent machines and workers. The objective is 
to establish a pairing among machines and workers that maximizes productivity 
(being defined as the number of worker-machine couples in the pairing), subject 
to the following critical constraints. First, machines, and workers are categorized 
into types; a machine of some type T can only be assigned a worker of the same 
type T (machines and workers are each given only one type). This represents the 
fact that a worker is only trained to manipulate a certain machine requiring cer-
tain technological knowledge, see e.g. [ 2]. Additionally, machines require access 
to servers, and workers utilize specific computer programs. Associating a worker 
W with a machine M implies installing the worker’s sequence of programs on 
the machine’s sequence of servers. Each server can only support one program, 
and vice versa. Formally, this means that the list of programs of W must be 
mapped onto the list of servers used by M in a way that must ensure injectivity, 
i.e., each server paired with a program cannot be mapped to another program 
in another worker-machine association. 

As an example highlighting the injectivity constraint, consider two machines, 
M1 and M2 of a same type T , with respective lists of servers [s1, s2] and [s2, s3]. 
Consider two workers W1 and W2, also of type T , with respective programs 
[p1, p2] and [p3, p2]. Then, it is impossible to construct a valid machine-worker 
pairing of size 2, since it would imply mapping p2 onto two different servers. 

In what follows, we will refer to this class of problems as instances of the 
Double Assignment Problem (DAP), a name chosen to reflect the fact that a 
second mapping (namely that of servers and programs) is being constructed 
alongside the main assignment (namely that of machines and workers). Examples 
of practical use cases in which a DAP instance arises include the following: 

– In cloud computing design, one may seek an injective mapping from virtual 
machines to tasks, while respecting compatibility constraints between hard-
ware configurations (servers) and software dependencies (programs) [ 1]. 

– In logistics, assigning delivery methods (servers) to specific routes (programs) 
sometimes involves respecting an underlying association of specific drivers 
(workers) to the vehicles (machines) that they are allowed to drive [ 5]. 

– In escape games (or rooms), players often have to solve small-scale mathemat-
ical puzzles to obtain some clue as to their following task [ 8]. Interestingly, 
small DAP instances are, in fact, often used for such purposes. 

Although the problem thus does arise in a range of real-life situations (the 
list above being non-exhaustive), it has, to the best of our knowledge, not been 
studied formally before. In the remainder of the paper, we first introduce DAP 
in a more formal way to fill this gap, then prove it to be NP-hard. Since it 
appears from our research that no existing heuristic or algorithm can as-is treat 
the problem in a fairly efficient or scalable way – due to the subtlety of the 
injectivity constraints – we subsequently develop a dedicated heuristic and com-
pare its performances with those of generic classes of known algorithms selected 
for their capability to solve or approximate such search problems. To achieve 
this, we introduce the notion of k-swap stability, where the parameter k controls
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the approximation level, considering as stable those solutions that cannot be 
extended with a new machine-worker couple despite swapping (i.e. replacing) of 
most k previously selected machine-worker couples. The core of our algorithm 
revolves around iteratively swapping pairs within the matching under construc-
tion to incorporate some new machine-worker couple, as such enhancing the so-
called quality of the matching while upholding adherence to the inherent DAP 
constraints. To validate our approach, we implement the algorithm in Java, and 
give quantitative results of its runs. 

Throughout the paper, we will use the running example of an escape room 
puzzle that relies on DAP logic – as briefly discussed above. The puzzle basically 
boils down to finding pairs of dominos decorated by symbols, ensuring that 
all these pairs are compatible with one another. While such examples allow 
to visualize DAP instances easily, recall that more scalable or real-life DAP 
occurrences – i.e. those for which we are looking for an efficient approximation 
– tend to harbour drastically more machines, workers, servers, and programs. 

2 Setting the Stage: The Double Assignment Problem 
(DAP) 

We start by defining what assignments are considered valid within DAP. 

Definition 1. Let us consider a set of machines M, a set of servers denoted S, 
and a function  S : M �→ (N �→ S), where  ∀m ∈ M  the sequence S(m) is called 
the list of servers of m. To denote such a sequence we will sometimes use the 
notation 〈sm 

1 , . . . , s
m 
n 〉, where  n ∈ N, and to further ease notation, given such 

a sequence  u we will refer to its ith element by ui. Let us similarly consider a 
set of workers W and a set of programs P, such that each worker w ∈ W  is 
associated to a sequence referred to as its list of programs through a function 
P : W �→ (N �→ P). Both machines and servers are also given a type, represented 
by integers and retrievable through a function t : M ∪ W �→ Z. 

A pair of mappings (φ : M �→ W, ψ  : S �→ P) is said to be valid if and 
only if (1) ∀(m, w) ∈ φ : t(m) =  t(w), i.e. coupled machines and workers must 
be of the same type; (2) ∀m1,m2 ∈ M  : m1 	= m2 ⇒ φ(m1) 	= φ(m2), i.e. 
φ is injective; (3) ∀s1, s2 ∈ S  : s1 	= s2 ⇒ ψ(s1) 	= ψ(s2), i.e. ψ is injective; 
(4) ∀(m, w) ∈ φ : |S(m)| = |P (w)| ∧ ∀i ∈ 1..|S(m)| : ψ(S(m)i) =  P (w)i, 
i.e. each server of m is associated (through ψ) with exactly one program of w, 
corresponding to their position in the lists of servers and programs. 

Given two machine-worker couples (m, w) and (m, w′), we will sometimes 
say that the couples are compatible when there exists a mapping φ containing 
both couples and being part of a valid pair of mappings; otherwise the couples 
are said to be incompatible. Abusing terminology, we will also sometimes use the 
term (in)compatible for entire (parts of) mappings instead of individual couples. 

The topmost part of Fig. 1 is an instance of a game that we will call DominAP, 
incarnating a logic puzzle based on small instances of DAP. The upside-down 
dominos on the top play the role of the machines; they feature everyday life
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Fig. 1. An illustrative DominAP instance and two valid pairings. 

objects, such as an hourglass and a ball, that represent the underlying servers. 
Similarly, the right side up dominos below them are the workers and contain 
animals (for programs). Given such an initial configuration, the player of a Dom-
inAP instance is asked to form as many pairs of dominos as possible. The type 
of a domino is represented by the number of bullets that are drawn on its light-
coloured triangle, and two dominos in a pair must have the same type. Of course, 
it is also imperative that each pair be composed of an object-domino (machine) 
and an animal-domino (worker), and that the injectivity constraint is respected, 
i.e. creating a pair of dominos implies mapping the animals of its worker on the 
objects of its machine, in the order in which they appear on the surface when 
placed as in the figure. Obviously, this strictly corresponds to the search for two 
mappings in a DAP instance – with the subtle variation that the player must 
try to maximize the number of domino pairs. 

Example 1. In the situation depicted in Fig. 1, it is obviously not possible to find 
a valid double matching such that the mapping φ contains 4 pairs of dominos 
(because of the different types and the injectivity constraints). It is however 
straightforward to find two compatible pairs of dominos, e.g. by mapping the 
bird on the hourglass. Such a mapping, depicted in the lower left part of Fig. 1,
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cannot further be extended due to the injectivity constraint of the underlying 
mapping ψ between animals and objects. Indeed, the two dominos having three 
symbols cannot be added as a pair to the matching under construction, since it 
would imply associating the bird with the ball, when the bird is already paired 
with the hourglass in the two already chosen pairs. In contrast, the three pairs of 
dominos on the bottom-right side of the figure are compatible with one another; 
each animal is mapped on a different object (and vice versa), which means 
that the only recurring symbols (namely the bird and the ball) are coherently 
mapped onto one another. This evidently induces a mapping φ of maximal size 
(|phi| = 3). The same, as it happens, holds here for ψ (|ψ| = 5 being maximal), 
but this is not necessarily the case in general. Also note that while, in general, 
more than one domino mapping φ of maximal size can exist, the purpose of the 
DominAP game is to find one of such largest mappings. 

The example above hints that, while finding valid mappings is a rather 
straightforward task, some of these mappings might be considered suboptimal. 
To remain parametric regarding the underlying context of application, we define 
such a sense of optimality in terms of a quality function ω. 

Definition 2. Let φ and ψ be a valid pair of mappings as per Definition 1. 
Then, a quality function is any function ω that takes such a pair of mappings 
as input and outputs a real number, i.e. a function that follows the signature 
ω : (M �→ W) × (S �→ P) �→ R. 

In practice, one useful incarnation of the quality function ω is simply the 
function ω̂ counting the number of machines that have found a matching worker, 
i.e. ω̂(φ, ψ) =  |φ|. It is this quality function that needs to be maximized in 
DominAP instances. While particularly straightforward, the function ω̂ reflects 
the search for a machine-worker assignment allowing for as many machines to 
be handled at once; this corresponds to a common concern in assignment (and, 
more globally, optimization) problems. As such, we will from now on facilitate 
our discussion and consider ω̂ as our working quality function. Recall however 
that many other incarnations of quality measures exist, an example being a 
function counting how many different types are captured by the mappings. 

We can now define DAP and show that, when instantiated on the quality 
function ω̂, the problem is intrinsically hard. 

Definition 3. Let DAP denote the following problem: for given sets M, W, S 
and P, find a pair of valid mappings φ and ψ such that � another valid pair of 
mappings φ′ and ψ′ (with (φ, ψ) 	= (φ′, ψ′)) verifying ω(φ′, ψ′) > ω(φ, ψ). 

Proposition 1. Let DEC-DAP refer to the decision-problem “Given a DAP 
instance, does it admit a valid pair of mappings (φ, ψ) such that ω̂(φ, ψ) =  
min(|M|, W)?”. DEC-DAP is NP-complete. 

Proof. Proving the belonging of DEC-DAP to NP is immediate, since the veri-
fication of an adequate solution can be achieved simply by computing ω̂ values 
as well as the input sets’ cardinalities, which is done in linear time.
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We will now perform a reduction from the Induced Subgraph Isomorphism 
Problem (ISIP) [ 11], generalizing the proof given in [ 14]. ISIP can be formulated 
as follows. Given two non-oriented and unweighted graphs, (V1, E1) and (V2, E2), 
with |V1| ≤ |V2| and where for each graph (Vi, Ei), Vi denotes the set of vertices 
and Ei the set of edges between vertices from Vi, then ISIP is the problem of 
deciding whether (V1, E1) is isomorphic to an induced subgraph of (V2, E2). For 
such an isomorphism to be found, there needs to exist a (total) injective function 
f : V1 �→ V2 such that ∀x, y ∈ V1, there is an edge (x, y) ∈ E1 if and only if there 
is an edge (f (x), f(y)) ∈ E2. The problem is NP-complete [ 11]. 

Let us transform an arbitrary instance of ISIP into an instance of DEC-
DAP as follows. Given the graphs (V1, E1) and (V2, E2) (with |V1| ≤ |V2|), we 
define a set of machines M1 = {Mi|i ∈ V1} that are all compatible with the 
corresponding set of workers W1 = {Wi|i ∈ V2}, such that ∀i ∈ V1 : S(Mi) = 〈i〉
and ∀i ∈ V2 : P (Mi) = 〈i〉. We then define a second set of machines M2 = 
{M ′

i,j |(i, j) ∈ E1} and a second set of workers W2 = {W ′
i,j |(i, j) inE2}. Again, 

these machines and workers are supposed to be of the same type. This time, 
the servers, and programs are such that ∀(i, j) ∈ E1 : S(M ′

i,j) = 〈i, j〉 and 
∀(i, j) ∈ E2 : P (W ′

i,j) = 〈i, j〉. We then have our complete sets of machines 
M = M1 ∪ M2 and W = W1 ∪ W2. 

The machines are thus composed of the nodes (having one server) and the 
edges (having two) of the first graph, while the workers represent those of the 
second graph, where nodes are similarly encoded as workers having one program, 
and edges as workers having two. Now if we were able to decide DEC-DAP, we 
would be capable of knowing whether there exists a total function mapping the 
vertex identifiers of V1 onto those of V2, while ensuring that all edges from E1 

are found – after applying ψ on their constitutive vertices – in E2, since the 
injectivity constraint in the mapping ψ would need to be observed. DEC-DAP’s 
answer would thus be “yes” if and only if all vertices and edges of V1 have an 
isomorphic counterpart in V2, i.e. if the answer to ISIP is also “yes”. 
�

In various domains such as cloud computing, telecommunications, healthcare, 
supply chain management, manufacturing and energy management, the ability 
to quickly and accurately assign resources while respecting compatibility con-
straints directly impacts operational efficiency and service quality. Consequently, 
developing techniques to approximate DAP solutions swiftly while maintaining 
a high level of quality (ω-wise) is critical. The following section introduces such 
a heuristic, initially applied in the context of so-called anti-unification of logic 
program artefacts [ 14], which in fact incarnates a specific case of DAP. 

3 The k-Swap Stability Abstraction 

The k-swap stability abstraction is a heuristic particularly adapted to problems 
involving assignments under constraints. It is based on the following key notion. 

Definition 4. Let k be a natural, and φ and φ′ be two injective mappings of 
elements from disjoint sets, such that |φ| ¿ |φ′|. We say that φ′ is a k-swap of 
φ if and only if |φ| − |φ ∩ φ′| ≤  k.
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In other words, a mapping is a k-swap of another mapping if it can be 
obtained by “swapping” (i.e. removing or replacing) at most k pairs in it. The 
stability property can then be defined as follows. 

Definition 5. Let us consider an instance of DAP, as well as two mappings 
(φ, ψ) that form a valid pair of mappings for it. The pair (φ, ψ) is said to be 
k-swap-stable if and only if there does not exist (φ′, ψ′) and ( ̂φ, ψ̂), two  valid  
pairs of mappings w.r.t. the DAP instance, such that φ′ is a k-swap of φ and 
φ′ ⊆ φ̂ and | ̂φ| > |φ|. 

Intuitively, a pair of mappings that is not k-swap-stable is thus a pair (φ, ψ) 
where φ admits a k-swap that can readily be extended (without breaking the 
injectivity rules) into some larger mapping (φ̂ in the definition). The k-swap-
stability criterion can thus be understood as an indication of the fitness of an 
assignment under construction. If a pair of mappings is not k-swap-stable (where 
k ∈ N is a parameter determined beforehand), it means that a “better” assign-
ment can be found (at least w.r.t. ω̂) at the cost of swapping up to k pairs in 
the machines-workers mapping φ. On the other hand, if the mapping is stable 
already, then it is considered a “good enough” approximation of an optimal 
(double) assignment. 

Example 2. Let us reconsider the DominAP instance from Fig. 1. The mapping 
in the lower left part is 1-swap-stable: one could not remove a pair of dominos 
and replace it by another pair that could lead to admitting a third pair in the 
mapping. However, the solution is not 2-swap-stable, since the replacement of 
both dominos can lead to the mapping of size 3 depicted in the lower right part. 

Note that the choice of a judicious value for k is crucial, since it will dictate 
the level of backtracking allowed in the search process. A value of zero means 
that no backtracking should be performed at all, meaning that the mapping φ 
is built by simply collecting machine-worker pairs that are all compatible with 
each other, in a somewhat greedy manner. When k is set to a value at least 
equal to that of all machines (or all workers), the backtracking is exhaustive, 
since in that case, all the couples forming a mapping under construction can be 
completely swapped away and replaced in the search process. 

While the k-swap-stable notion allows to elegantly characterize interesting 
solutions to DAP instances, it does not describe how such solutions should be 
computed in practical situations. Indeed, computing all the possible k-swaps of 
a mapping φ under construction can quickly become intense in itself. To tackle 
this, we will develop hereunder an algorithm that approximates k-swap-stable 
solutions, by incorporating one greedy choice when having to chose which couple 
could be added to φ next. 

The resulting simple algorithm can be formulated as follows. We start by 
initializing the mappings (φ, ψ) = ([], []). We will then iteratively try and add 
the most promising couple (m, w) to  φ. Such a most promising couple is defined 
as the couple introducing as few injectivity conflicts as possible w.r.t. all the 
other possible couples (that are not yet in φ). If (m, w) can readily be added to
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φ without conflict, then we update φ = φ∪{(m, w)} and continue the algorithm. 
If (m, w) introduces conflicts in φ, we remove the conflicted couples S from φ; 
if |S| ≤  k then we examine if there exists a set of available couples C that can 
replace S in φ, that is  |C| = S ∧ φ′ = φ \ S ∪ C is a k-swap of φ ∧ φ′ ∪ {(m, w)} 
is a valid mapping. The search is performed using a queue to allow backtracking 
on potential ex aequo candidates (both for the choice of (m, w) and for the set 
C to be swapped with S). If at one point no such k-swap can be found, then the 
current search branch is pruned. (A formalization of the algorithm depicted in 
the lines above can be found in [ 14].) 

Even if the k-swap mechanism does not guarantee convergence to a global 
optimum, it represents a promising heuristic for tempering the inherent compu-
tational demands of DAP while allowing to navigate in and out of local optima 
(depending on the maximal size of swaps k). In the following section, we develop 
an implementation of the algorithm sketched above, and we give some prelimi-
nary results relative to its performance. 

4 Experimental Results 

The fact that our k-swap approximation performs close to a polynomial value 
(regarding the input sizes of M and W) has been demonstrated before [ 15], but 
empirical results were still needed to validate the use of k-swap strategies for 
general instances such as those considered in (large instances of) DominAP. To 
that aim, we now evaluate our k-swap heuristic on concrete DAP instances. To 
benchmark it in a relatable manner, we have implemented a brute force algo-
rithm (which generates all possible mappings and selects the best pair), a greedy 
algorithm (being the algorithm that systematically selects a couple readily com-
patible with the mapping φ under construction that shows as few conflicts as 
possible with the remaining potential couples) as well as a well-known swarm-
based approximation algorithm technique [ 6], where the size of the swarm of 
particles depends on the number of input dominos. For each approach, we con-
ducted 44760 automatically generated tests, using each time up to 250 randomly 
generated items, an item being either a machine, a worker, a server, or a pro-
gram, with the servers and programs being limited to 8 different values each. 
Recall that, while these might represent small real-life instances of DAP, the 
number of possible pairs of mappings follows a combinatorial growth that can 
heavily vary (even for two instances of similar size) due to the disparity of types 
and server-program associations. Each of our test classes is therefore character-
ized by a range of such possible matching combinations. As for the value of the 
parameter k, we have considered the candidate values {1, 2, 4, 8}, following the 
approach of the k-swap experimentation described in [ 14]; these values corre-
spond to a small (k = 1) to considerable (k = 8) level of backtracking in regard 
to the number of items appearing in the test cases; indeed, using a certain value 
of k allows to swap up to k couples at each iteration, which can quickly lead to 
an important amount of computational work, so that higher values of k than 
those selected above can quickly render the algorithm as little efficient as the
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brute force approach. This, of course, depends on the structural properties of 
the inputs used in the algorithm, and the value of k should systematically be 
carefully chosen after observing the particulars of the application in which it is 
used. However, determining the best value for k statically is obviously a hard 
task. Therefore, our implementation dynamically updates the value of k when 
such a change allows finding a better solution promptly. 

We executed the battery of tests on an Apple M2 Max chip with 32 GB 
of RAM and running on macOS Sonoma 14.6. The raw results are shown in 
Fig. 2, with the left part depicting mean execution times and the right part 
plotting the size of the outputted mappings. The values on the right of each 
graph are the number of servers/programs allocated to each machine/worker 
present in the instance; these values can be understood as the different test 
classes mentioned above. For more detailed results and explanations, we refer to 
the Java implementation available online [ 13]. 

Fig. 2. A comparison of techniques used to solve or approximate the solution of DAP 
instances: execution time (left) and candidate solution (φ) size (right)  

Interestingly, as the figure shows, the k-swap routine operates with execution 
times comparable to the naive greedy approach, while producing solution map-
pings φ with sizes that are intermediate between those obtained by the swarm 
approach (the closest to the optimal size) and the greedy approach (often sub-
optimal by design). Note that for large instances, the brute force method is 
infeasible due to combinatorial explosion – hence its absence in some plots. As 
for the swarm strategy, albeit being the slowest (except brute force) in execu-
tion time, it proves to be effective in terms of solution size – paving the way for 
searching a combination of its features and that of k-swap-based approaches.
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5 Discussion and Future Work 

In this paper, we have defined and formalized the Double Assignment Prob-
lem (DAP), a variant of the classical assignment problem that, to the best of 
our knowledge, had not been formally studied before. Then, we introduced an 
approximation scheme called k-swap-stability and have demonstrated its applica-
bility in approximating DAP instances. To verify the relevance of this approach, 
we developed a k-swap-based routine. Our experimental results, based on a syn-
thetic benchmark of randomly generated instances, have shown that integrating 
k-swap logic led to significant improvements in efficiency and scalability, par-
ticularly in the handling of complex scenarios (i.e. where φ and ψ admit many 
potential combinations). We suspect that the strategy can therefore help in sev-
eral areas involving (implicit) DAP instances such as supply chain handling, 
puzzle solving and resource management, to name a few. A thorough study of 
the occurrences of DAP instances in concrete situations is left for future work. 

An interesting alternative formulation of DAP has, in fact, emerged in 
the context of syntactical anti-unification within (Inductive) Logic Program-
ming [ 14], where the purpose is to compute, given two sets of Prolog-like atoms, 
their most specific generalization. It turns out that such generalizations involve 
an underlying injective mapping from the variables appearing in one atom to the 
variables of the other, parallel to another mapping that needs to be found among 
the atoms themselves. Apart from this exact correspondence to our DAP for-
mulation, existing approaches in the field of optimization techniques in bipartite 
graphs did not yet consider instances of what we called the DAP problem. How-
ever, some bodies of research did tackle similar problems, in the sense that these 
also involve finding a matching in the presence of a few additional constraints. 

Let us first get back to the Initial Assignment Problem (IAP). IAP involves 
finding a maximum weight matching in a bipartite graph containing tasks and 
agents, where the sum of the selected edges’ weights (being integral numbers) is 
to be maximized. This problem has been classically resolved in O(n3) using the 
Hungarian method, with n representing the number of vertices in the larger of 
the two input sets [ 7]. The Fractional Assignment Problem extends IAP to allow 
fractional task assignments across multiple agents. It is also solvable by known 
polynomial-time routines [ 9]. In contrast, the Generalized Assignment Problem, 
where each agent has specific capacities and associated costs or benefits, is gen-
erally NP-hard [ 3]. Another intractable version, the Quadratic Assignment Prob-
lem, allows for quadratic weights instead of integers only; it is typically approx-
imated by heuristics or evolutionary algorithms [ 10], much like the Fuzzy [ 4] or  
Multi-objective [ 12] variants, to name only two of many IAP tweaks. 

In future work, we aim to build on the promising results of our implemen-
tation by examining its scalability. This will involve incorporating confidence 
intervals and statistical significance tests in our performance comparisons, and 
expanding our benchmarks with real-world datasets from domains such as logis-
tics, cloud computing, and network allocation. We also plan to explore advanced 
optimization strategies, such as hybridizing the k-swap heuristic with swarm 
optimization or integrating machine learning tools into the implementation.
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Extending our approach to new scenarios and investigating variations in the 
injectivity constraints as they arise in real-world applications will also be key 
areas of future research. This should help clarify how subtle variations may 
impact both the problem’s complexity and the quality of its solutions. 
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