
Optimizing Bipartite Matching
with Interleaved and Injective Mappings:
Implementing and Evaluating the k-Swap

Heuristic

Gonzague Yernaux(B), Manel Barkallah, Mikel Vandeloise, Wim Vanhoof,
and Jean-Marie Jacquet

Faculty of Computer Science, University of Namur, Namur, Belgium
{gonzague.yernaux,manel.barkallah,mikel.vandeloise,

wim.vanhoof,jean-marie.jacquet}@unamur.be

Abstract. Bipartite matching problems play a crucial role in various
software engineering tools, including resource allocation and task assign-
ment. In this paper, we address a specific variant of the bipartite match-
ing problem, called the Double Assignment Problem (DAP), focusing on
the allocation of machines to workers in a production environment. The
objective is to maximize the number of worker-machine associations, sub-
ject to a second, orthogonal matching problem: associating some worker
W to a machine M implies that the (ordered) list of servers employed
by M are dedicated to the respective programs used by the worker W .
Since DAP is, in general, NP-hard, we introduce a heuristic that quickly
approximates candidate results. The heuristic is called k-swap stability
and has originally been formalized to tackle a specific DAP instance aris-
ing in the niche field of anti-unification. We extend the definition to our
more general setting and give promising preliminary results obtained by
applying our k-swap implementation on a testbed of examples.

Keywords: Double Assignment Problem · combinatorial
optimization · approximation algorithms · escape game puzzles ·
resource allocation

1 Introduction

In the world of combinatorial optimization, the problem of matching elements
from two disjoint sets under certain constraints, known as the Assignment
Problem, is fundamental and has widespread applications. This paper tackles
a nuanced variant of this bipartite matching problem, in which the purpose
is to optimize the allocation of machines to workers in industrial settings while
ensuring compatibility based on machine, worker types and properties. Note that,
while we will use the machine/worker terminology in the paper, the problem can
arise in a range of different applications.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
K. Daimi and A. Al Sadoon (Eds.): ACR 25, LNNS 1346, pp. 51–62, 2025.
https://doi.org/10.1007/978-3-031-87647-9_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-87647-9_5&domain=pdf
https://doi.org/10.1007/978-3-031-87647-9_5

52 G. Yernaux et al.

Let us first give the intuition of our Assignment Problem variant. Consider a
bipartite graph where vertices represent machines and workers. The objective is
to establish a pairing among machines and workers that maximizes productivity
(being defined as the number of worker-machine couples in the pairing), subject
to the following critical constraints. First, machines, and workers are categorized
into types; a machine of some type T can only be assigned a worker of the same
type T (machines and workers are each given only one type). This represents the
fact that a worker is only trained to manipulate a certain machine requiring cer-
tain technological knowledge, see e.g. [2]. Additionally, machines require access
to servers, and workers utilize specific computer programs. Associating a worker
W with a machine M implies installing the worker’s sequence of programs on
the machine’s sequence of servers. Each server can only support one program,
and vice versa. Formally, this means that the list of programs of W must be
mapped onto the list of servers used by M in a way that must ensure injectivity,
i.e., each server paired with a program cannot be mapped to another program
in another worker-machine association.

As an example highlighting the injectivity constraint, consider two machines,
M1 and M2 of a same type T , with respective lists of servers [s1, s2] and [s2, s3].
Consider two workers W1 and W2, also of type T , with respective programs
[p1, p2] and [p3, p2]. Then, it is impossible to construct a valid machine-worker
pairing of size 2, since it would imply mapping p2 onto two different servers.

In what follows, we will refer to this class of problems as instances of the
Double Assignment Problem (DAP), a name chosen to reflect the fact that a
second mapping (namely that of servers and programs) is being constructed
alongside the main assignment (namely that of machines and workers). Examples
of practical use cases in which a DAP instance arises include the following:

– In cloud computing design, one may seek an injective mapping from virtual
machines to tasks, while respecting compatibility constraints between hard-
ware configurations (servers) and software dependencies (programs) [1].

– In logistics, assigning delivery methods (servers) to specific routes (programs)
sometimes involves respecting an underlying association of specific drivers
(workers) to the vehicles (machines) that they are allowed to drive [5].

– In escape games (or rooms), players often have to solve small-scale mathemat-
ical puzzles to obtain some clue as to their following task [8]. Interestingly,
small DAP instances are, in fact, often used for such purposes.

Although the problem thus does arise in a range of real-life situations (the
list above being non-exhaustive), it has, to the best of our knowledge, not been
studied formally before. In the remainder of the paper, we first introduce DAP
in a more formal way to fill this gap, then prove it to be NP-hard. Since it
appears from our research that no existing heuristic or algorithm can as-is treat
the problem in a fairly efficient or scalable way – due to the subtlety of the
injectivity constraints – we subsequently develop a dedicated heuristic and com-
pare its performances with those of generic classes of known algorithms selected
for their capability to solve or approximate such search problems. To achieve
this, we introduce the notion of k-swap stability, where the parameter k controls

Bipartite Matching with Interleaved Injective Mappings 53

the approximation level, considering as stable those solutions that cannot be
extended with a new machine-worker couple despite swapping (i.e. replacing) of
most k previously selected machine-worker couples. The core of our algorithm
revolves around iteratively swapping pairs within the matching under construc-
tion to incorporate some new machine-worker couple, as such enhancing the so-
called quality of the matching while upholding adherence to the inherent DAP
constraints. To validate our approach, we implement the algorithm in Java, and
give quantitative results of its runs.

Throughout the paper, we will use the running example of an escape room
puzzle that relies on DAP logic – as briefly discussed above. The puzzle basically
boils down to finding pairs of dominos decorated by symbols, ensuring that
all these pairs are compatible with one another. While such examples allow
to visualize DAP instances easily, recall that more scalable or real-life DAP
occurrences – i.e. those for which we are looking for an efficient approximation
– tend to harbour drastically more machines, workers, servers, and programs.

2 Setting the Stage: The Double Assignment Problem
(DAP)

We start by defining what assignments are considered valid within DAP.

Definition 1. Let us consider a set of machines M, a set of servers denoted S,
and a function S : M �→ (N �→ S), where ∀m ∈ M the sequence S(m) is called
the list of servers of m. To denote such a sequence we will sometimes use the
notation 〈sm

1 , . . . , s
m
n 〉, where n ∈ N, and to further ease notation, given such

a sequence u we will refer to its ith element by ui. Let us similarly consider a
set of workers W and a set of programs P, such that each worker w ∈ W is
associated to a sequence referred to as its list of programs through a function
P : W �→ (N �→ P). Both machines and servers are also given a type, represented
by integers and retrievable through a function t : M ∪ W �→ Z.

A pair of mappings (φ : M �→ W, ψ : S �→ P) is said to be valid if and
only if (1) ∀(m, w) ∈ φ : t(m) = t(w), i.e. coupled machines and workers must
be of the same type; (2) ∀m1,m2 ∈ M : m1 	= m2 ⇒ φ(m1) 	= φ(m2), i.e.
φ is injective; (3) ∀s1, s2 ∈ S : s1 	= s2 ⇒ ψ(s1) 	= ψ(s2), i.e. ψ is injective;
(4) ∀(m, w) ∈ φ : |S(m)| = |P (w)| ∧ ∀i ∈ 1..|S(m)| : ψ(S(m)i) = P (w)i,
i.e. each server of m is associated (through ψ) with exactly one program of w,
corresponding to their position in the lists of servers and programs.

Given two machine-worker couples (m, w) and (m, w′), we will sometimes
say that the couples are compatible when there exists a mapping φ containing
both couples and being part of a valid pair of mappings; otherwise the couples
are said to be incompatible. Abusing terminology, we will also sometimes use the
term (in)compatible for entire (parts of) mappings instead of individual couples.

The topmost part of Fig. 1 is an instance of a game that we will call DominAP,
incarnating a logic puzzle based on small instances of DAP. The upside-down
dominos on the top play the role of the machines; they feature everyday life

54 G. Yernaux et al.

Fig. 1. An illustrative DominAP instance and two valid pairings.

objects, such as an hourglass and a ball, that represent the underlying servers.
Similarly, the right side up dominos below them are the workers and contain
animals (for programs). Given such an initial configuration, the player of a Dom-
inAP instance is asked to form as many pairs of dominos as possible. The type
of a domino is represented by the number of bullets that are drawn on its light-
coloured triangle, and two dominos in a pair must have the same type. Of course,
it is also imperative that each pair be composed of an object-domino (machine)
and an animal-domino (worker), and that the injectivity constraint is respected,
i.e. creating a pair of dominos implies mapping the animals of its worker on the
objects of its machine, in the order in which they appear on the surface when
placed as in the figure. Obviously, this strictly corresponds to the search for two
mappings in a DAP instance – with the subtle variation that the player must
try to maximize the number of domino pairs.

Example 1. In the situation depicted in Fig. 1, it is obviously not possible to find
a valid double matching such that the mapping φ contains 4 pairs of dominos
(because of the different types and the injectivity constraints). It is however
straightforward to find two compatible pairs of dominos, e.g. by mapping the
bird on the hourglass. Such a mapping, depicted in the lower left part of Fig. 1,

Bipartite Matching with Interleaved Injective Mappings 55

cannot further be extended due to the injectivity constraint of the underlying
mapping ψ between animals and objects. Indeed, the two dominos having three
symbols cannot be added as a pair to the matching under construction, since it
would imply associating the bird with the ball, when the bird is already paired
with the hourglass in the two already chosen pairs. In contrast, the three pairs of
dominos on the bottom-right side of the figure are compatible with one another;
each animal is mapped on a different object (and vice versa), which means
that the only recurring symbols (namely the bird and the ball) are coherently
mapped onto one another. This evidently induces a mapping φ of maximal size
(|phi| = 3). The same, as it happens, holds here for ψ (|ψ| = 5 being maximal),
but this is not necessarily the case in general. Also note that while, in general,
more than one domino mapping φ of maximal size can exist, the purpose of the
DominAP game is to find one of such largest mappings.

The example above hints that, while finding valid mappings is a rather
straightforward task, some of these mappings might be considered suboptimal.
To remain parametric regarding the underlying context of application, we define
such a sense of optimality in terms of a quality function ω.

Definition 2. Let φ and ψ be a valid pair of mappings as per Definition 1.
Then, a quality function is any function ω that takes such a pair of mappings
as input and outputs a real number, i.e. a function that follows the signature
ω : (M �→ W) × (S �→ P) �→ R.

In practice, one useful incarnation of the quality function ω is simply the
function ω̂ counting the number of machines that have found a matching worker,
i.e. ω̂(φ, ψ) = |φ|. It is this quality function that needs to be maximized in
DominAP instances. While particularly straightforward, the function ω̂ reflects
the search for a machine-worker assignment allowing for as many machines to
be handled at once; this corresponds to a common concern in assignment (and,
more globally, optimization) problems. As such, we will from now on facilitate
our discussion and consider ω̂ as our working quality function. Recall however
that many other incarnations of quality measures exist, an example being a
function counting how many different types are captured by the mappings.

We can now define DAP and show that, when instantiated on the quality
function ω̂, the problem is intrinsically hard.

Definition 3. Let DAP denote the following problem: for given sets M, W, S
and P, find a pair of valid mappings φ and ψ such that � another valid pair of
mappings φ′ and ψ′ (with (φ, ψ) 	= (φ′, ψ′)) verifying ω(φ′, ψ′) > ω(φ, ψ).

Proposition 1. Let DEC-DAP refer to the decision-problem “Given a DAP
instance, does it admit a valid pair of mappings (φ, ψ) such that ω̂(φ, ψ) =
min(|M|, W)?”. DEC-DAP is NP-complete.

Proof. Proving the belonging of DEC-DAP to NP is immediate, since the veri-
fication of an adequate solution can be achieved simply by computing ω̂ values
as well as the input sets’ cardinalities, which is done in linear time.

56 G. Yernaux et al.

We will now perform a reduction from the Induced Subgraph Isomorphism
Problem (ISIP) [11], generalizing the proof given in [14]. ISIP can be formulated
as follows. Given two non-oriented and unweighted graphs, (V1, E1) and (V2, E2),
with |V1| ≤ |V2| and where for each graph (Vi, Ei), Vi denotes the set of vertices
and Ei the set of edges between vertices from Vi, then ISIP is the problem of
deciding whether (V1, E1) is isomorphic to an induced subgraph of (V2, E2). For
such an isomorphism to be found, there needs to exist a (total) injective function
f : V1 �→ V2 such that ∀x, y ∈ V1, there is an edge (x, y) ∈ E1 if and only if there
is an edge (f (x), f(y)) ∈ E2. The problem is NP-complete [11].

Let us transform an arbitrary instance of ISIP into an instance of DEC-
DAP as follows. Given the graphs (V1, E1) and (V2, E2) (with |V1| ≤ |V2|), we
define a set of machines M1 = {Mi|i ∈ V1} that are all compatible with the
corresponding set of workers W1 = {Wi|i ∈ V2}, such that ∀i ∈ V1 : S(Mi) = 〈i〉
and ∀i ∈ V2 : P (Mi) = 〈i〉. We then define a second set of machines M2 =
{M ′

i,j |(i, j) ∈ E1} and a second set of workers W2 = {W ′
i,j |(i, j) inE2}. Again,

these machines and workers are supposed to be of the same type. This time,
the servers, and programs are such that ∀(i, j) ∈ E1 : S(M ′

i,j) = 〈i, j〉 and
∀(i, j) ∈ E2 : P (W ′

i,j) = 〈i, j〉. We then have our complete sets of machines
M = M1 ∪ M2 and W = W1 ∪ W2.

The machines are thus composed of the nodes (having one server) and the
edges (having two) of the first graph, while the workers represent those of the
second graph, where nodes are similarly encoded as workers having one program,
and edges as workers having two. Now if we were able to decide DEC-DAP, we
would be capable of knowing whether there exists a total function mapping the
vertex identifiers of V1 onto those of V2, while ensuring that all edges from E1

are found – after applying ψ on their constitutive vertices – in E2, since the
injectivity constraint in the mapping ψ would need to be observed. DEC-DAP’s
answer would thus be “yes” if and only if all vertices and edges of V1 have an
isomorphic counterpart in V2, i.e. if the answer to ISIP is also “yes”.
�

In various domains such as cloud computing, telecommunications, healthcare,
supply chain management, manufacturing and energy management, the ability
to quickly and accurately assign resources while respecting compatibility con-
straints directly impacts operational efficiency and service quality. Consequently,
developing techniques to approximate DAP solutions swiftly while maintaining
a high level of quality (ω-wise) is critical. The following section introduces such
a heuristic, initially applied in the context of so-called anti-unification of logic
program artefacts [14], which in fact incarnates a specific case of DAP.

3 The k-Swap Stability Abstraction

The k-swap stability abstraction is a heuristic particularly adapted to problems
involving assignments under constraints. It is based on the following key notion.

Definition 4. Let k be a natural, and φ and φ′ be two injective mappings of
elements from disjoint sets, such that |φ| ¿ |φ′|. We say that φ′ is a k-swap of
φ if and only if |φ| − |φ ∩ φ′| ≤ k.

Bipartite Matching with Interleaved Injective Mappings 57

In other words, a mapping is a k-swap of another mapping if it can be
obtained by “swapping” (i.e. removing or replacing) at most k pairs in it. The
stability property can then be defined as follows.

Definition 5. Let us consider an instance of DAP, as well as two mappings
(φ, ψ) that form a valid pair of mappings for it. The pair (φ, ψ) is said to be
k-swap-stable if and only if there does not exist (φ′, ψ′) and (̂φ, ψ̂), two valid
pairs of mappings w.r.t. the DAP instance, such that φ′ is a k-swap of φ and
φ′ ⊆ φ̂ and | ̂φ| > |φ|.

Intuitively, a pair of mappings that is not k-swap-stable is thus a pair (φ, ψ)
where φ admits a k-swap that can readily be extended (without breaking the
injectivity rules) into some larger mapping (φ̂ in the definition). The k-swap-
stability criterion can thus be understood as an indication of the fitness of an
assignment under construction. If a pair of mappings is not k-swap-stable (where
k ∈ N is a parameter determined beforehand), it means that a “better” assign-
ment can be found (at least w.r.t. ω̂) at the cost of swapping up to k pairs in
the machines-workers mapping φ. On the other hand, if the mapping is stable
already, then it is considered a “good enough” approximation of an optimal
(double) assignment.

Example 2. Let us reconsider the DominAP instance from Fig. 1. The mapping
in the lower left part is 1-swap-stable: one could not remove a pair of dominos
and replace it by another pair that could lead to admitting a third pair in the
mapping. However, the solution is not 2-swap-stable, since the replacement of
both dominos can lead to the mapping of size 3 depicted in the lower right part.

Note that the choice of a judicious value for k is crucial, since it will dictate
the level of backtracking allowed in the search process. A value of zero means
that no backtracking should be performed at all, meaning that the mapping φ
is built by simply collecting machine-worker pairs that are all compatible with
each other, in a somewhat greedy manner. When k is set to a value at least
equal to that of all machines (or all workers), the backtracking is exhaustive,
since in that case, all the couples forming a mapping under construction can be
completely swapped away and replaced in the search process.

While the k-swap-stable notion allows to elegantly characterize interesting
solutions to DAP instances, it does not describe how such solutions should be
computed in practical situations. Indeed, computing all the possible k-swaps of
a mapping φ under construction can quickly become intense in itself. To tackle
this, we will develop hereunder an algorithm that approximates k-swap-stable
solutions, by incorporating one greedy choice when having to chose which couple
could be added to φ next.

The resulting simple algorithm can be formulated as follows. We start by
initializing the mappings (φ, ψ) = ([], []). We will then iteratively try and add
the most promising couple (m, w) to φ. Such a most promising couple is defined
as the couple introducing as few injectivity conflicts as possible w.r.t. all the
other possible couples (that are not yet in φ). If (m, w) can readily be added to

58 G. Yernaux et al.

φ without conflict, then we update φ = φ∪{(m, w)} and continue the algorithm.
If (m, w) introduces conflicts in φ, we remove the conflicted couples S from φ;
if |S| ≤ k then we examine if there exists a set of available couples C that can
replace S in φ, that is |C| = S ∧ φ′ = φ \ S ∪ C is a k-swap of φ ∧ φ′ ∪ {(m, w)}
is a valid mapping. The search is performed using a queue to allow backtracking
on potential ex aequo candidates (both for the choice of (m, w) and for the set
C to be swapped with S). If at one point no such k-swap can be found, then the
current search branch is pruned. (A formalization of the algorithm depicted in
the lines above can be found in [14].)

Even if the k-swap mechanism does not guarantee convergence to a global
optimum, it represents a promising heuristic for tempering the inherent compu-
tational demands of DAP while allowing to navigate in and out of local optima
(depending on the maximal size of swaps k). In the following section, we develop
an implementation of the algorithm sketched above, and we give some prelimi-
nary results relative to its performance.

4 Experimental Results

The fact that our k-swap approximation performs close to a polynomial value
(regarding the input sizes of M and W) has been demonstrated before [15], but
empirical results were still needed to validate the use of k-swap strategies for
general instances such as those considered in (large instances of) DominAP. To
that aim, we now evaluate our k-swap heuristic on concrete DAP instances. To
benchmark it in a relatable manner, we have implemented a brute force algo-
rithm (which generates all possible mappings and selects the best pair), a greedy
algorithm (being the algorithm that systematically selects a couple readily com-
patible with the mapping φ under construction that shows as few conflicts as
possible with the remaining potential couples) as well as a well-known swarm-
based approximation algorithm technique [6], where the size of the swarm of
particles depends on the number of input dominos. For each approach, we con-
ducted 44760 automatically generated tests, using each time up to 250 randomly
generated items, an item being either a machine, a worker, a server, or a pro-
gram, with the servers and programs being limited to 8 different values each.
Recall that, while these might represent small real-life instances of DAP, the
number of possible pairs of mappings follows a combinatorial growth that can
heavily vary (even for two instances of similar size) due to the disparity of types
and server-program associations. Each of our test classes is therefore character-
ized by a range of such possible matching combinations. As for the value of the
parameter k, we have considered the candidate values {1, 2, 4, 8}, following the
approach of the k-swap experimentation described in [14]; these values corre-
spond to a small (k = 1) to considerable (k = 8) level of backtracking in regard
to the number of items appearing in the test cases; indeed, using a certain value
of k allows to swap up to k couples at each iteration, which can quickly lead to
an important amount of computational work, so that higher values of k than
those selected above can quickly render the algorithm as little efficient as the

Bipartite Matching with Interleaved Injective Mappings 59

brute force approach. This, of course, depends on the structural properties of
the inputs used in the algorithm, and the value of k should systematically be
carefully chosen after observing the particulars of the application in which it is
used. However, determining the best value for k statically is obviously a hard
task. Therefore, our implementation dynamically updates the value of k when
such a change allows finding a better solution promptly.

We executed the battery of tests on an Apple M2 Max chip with 32 GB
of RAM and running on macOS Sonoma 14.6. The raw results are shown in
Fig. 2, with the left part depicting mean execution times and the right part
plotting the size of the outputted mappings. The values on the right of each
graph are the number of servers/programs allocated to each machine/worker
present in the instance; these values can be understood as the different test
classes mentioned above. For more detailed results and explanations, we refer to
the Java implementation available online [13].

Fig. 2. A comparison of techniques used to solve or approximate the solution of DAP
instances: execution time (left) and candidate solution (φ) size (right)

Interestingly, as the figure shows, the k-swap routine operates with execution
times comparable to the naive greedy approach, while producing solution map-
pings φ with sizes that are intermediate between those obtained by the swarm
approach (the closest to the optimal size) and the greedy approach (often sub-
optimal by design). Note that for large instances, the brute force method is
infeasible due to combinatorial explosion – hence its absence in some plots. As
for the swarm strategy, albeit being the slowest (except brute force) in execu-
tion time, it proves to be effective in terms of solution size – paving the way for
searching a combination of its features and that of k-swap-based approaches.

60 G. Yernaux et al.

5 Discussion and Future Work

In this paper, we have defined and formalized the Double Assignment Prob-
lem (DAP), a variant of the classical assignment problem that, to the best of
our knowledge, had not been formally studied before. Then, we introduced an
approximation scheme called k-swap-stability and have demonstrated its applica-
bility in approximating DAP instances. To verify the relevance of this approach,
we developed a k-swap-based routine. Our experimental results, based on a syn-
thetic benchmark of randomly generated instances, have shown that integrating
k-swap logic led to significant improvements in efficiency and scalability, par-
ticularly in the handling of complex scenarios (i.e. where φ and ψ admit many
potential combinations). We suspect that the strategy can therefore help in sev-
eral areas involving (implicit) DAP instances such as supply chain handling,
puzzle solving and resource management, to name a few. A thorough study of
the occurrences of DAP instances in concrete situations is left for future work.

An interesting alternative formulation of DAP has, in fact, emerged in
the context of syntactical anti-unification within (Inductive) Logic Program-
ming [14], where the purpose is to compute, given two sets of Prolog-like atoms,
their most specific generalization. It turns out that such generalizations involve
an underlying injective mapping from the variables appearing in one atom to the
variables of the other, parallel to another mapping that needs to be found among
the atoms themselves. Apart from this exact correspondence to our DAP for-
mulation, existing approaches in the field of optimization techniques in bipartite
graphs did not yet consider instances of what we called the DAP problem. How-
ever, some bodies of research did tackle similar problems, in the sense that these
also involve finding a matching in the presence of a few additional constraints.

Let us first get back to the Initial Assignment Problem (IAP). IAP involves
finding a maximum weight matching in a bipartite graph containing tasks and
agents, where the sum of the selected edges’ weights (being integral numbers) is
to be maximized. This problem has been classically resolved in O(n3) using the
Hungarian method, with n representing the number of vertices in the larger of
the two input sets [7]. The Fractional Assignment Problem extends IAP to allow
fractional task assignments across multiple agents. It is also solvable by known
polynomial-time routines [9]. In contrast, the Generalized Assignment Problem,
where each agent has specific capacities and associated costs or benefits, is gen-
erally NP-hard [3]. Another intractable version, the Quadratic Assignment Prob-
lem, allows for quadratic weights instead of integers only; it is typically approx-
imated by heuristics or evolutionary algorithms [10], much like the Fuzzy [4] or
Multi-objective [12] variants, to name only two of many IAP tweaks.

In future work, we aim to build on the promising results of our implemen-
tation by examining its scalability. This will involve incorporating confidence
intervals and statistical significance tests in our performance comparisons, and
expanding our benchmarks with real-world datasets from domains such as logis-
tics, cloud computing, and network allocation. We also plan to explore advanced
optimization strategies, such as hybridizing the k-swap heuristic with swarm
optimization or integrating machine learning tools into the implementation.

Bipartite Matching with Interleaved Injective Mappings 61

Extending our approach to new scenarios and investigating variations in the
injectivity constraints as they arise in real-world applications will also be key
areas of future research. This should help clarify how subtle variations may
impact both the problem’s complexity and the quality of its solutions.

References

1. Alam, M., Mahak, Haidri, R.A., Yadav, D.K.: Efficient task scheduling on virtual
machine in cloud computing environment. Int. J. Perv. Comput. Commun. 17(3),
271–287 (2021). https://doi.org/10.1108/IJPCC-04-2020-0029

2. Casola, V., De Benedictis, A., Rak, M., Villano, U.: Security-by-design in multi-
cloud applications: an optimization approach. Inf. Sci. 454, 344–362 (2018).
https://doi.org/10.1016/j.ins.2018.04.081

3. Desaulniers, G., Desrosiers, J., Solomon, M.M.: A branch-and-price algorithm for
the generalized assignment problem. Oper. Res. 53(3), 416–425 (2005). https://
doi.org/10.1287/opre.1040.0179

4. Gurukumaresan, D., Duraisamy, C., Srinivasan, R., Vijayan, V.: Optimal solution
of fuzzy assignment problem with centroid methods. Mater. Today Proc. 37, 553–
555 (2021). https://doi.org/10.1016/j.matpr.2020.05.582. International Conference
on Newer Trends and Innovation in Mechanical Engineering

5. Ha, N.T., Akbari, M., Au, B.: Last mile delivery in logistics and supply chain
management: a bibliometric analysis and future directions. Benchmarking Int. J.
30(4), 1137–1170 (2023). https://doi.org/10.1108/BIJ-07-2021-0409

6. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN
1995 - International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995).
https://doi.org/10.1109/ICNN.1995.488968

7. Kuhn, H.W.: The Hungarian method for the assignment problem. Naval Res.
Logist. Q. 2(1–2), 83–97 (1955). https://doi.org/10.1002/nav.3800020109

8. Pais, S., Sousa, A.E.: Using an escape room activity to enhance the motivation
of undergraduate life science students in mathematics classes - a case study. In:
Proceedings of the 17th European Conference on Games Based Learning, vol. 17,
no. 1 (2023). https://doi.org/10.34190/ecgbl.17.1.1431

9. Shigeno, M., Saruwatari, Y., Matsui, T.: An algorithm for fractional assignment
problems. Discret. Appl. Math. 56(2), 333–343 (1995). https://doi.org/10.1016/
0166-218X(93)00094-G. Fifth Franco-Japanese Days

10. Silva, A., Coelho, L.C., Darvish, M.: Quadratic assignment problem variants: a
survey and an effective parallel memetic iterated tabu search. Eur. J. Oper. Res.
292(3), 1066–1084 (2021). https://doi.org/10.1016/j.ejor.2020.11.035

11. Syslo, M.M.: The subgraph isomorphism problem for outerplanar graphs. Theoret.
Comput. Sci. 17(1), 91–97 (1982). https://doi.org/10.1016/0304-3975(82)90133-5

12. Tailor, A.R., Dhodiya, J.M.: Multi-objective Assignment Problems and Their Solu-
tions by Genetic Algorithm, pp. 409–428. Springer, Cham (2021). https://doi.org/
10.1007/978-3-030-72929-5 19

13. Vandeloise, M., Yernaux, G., Barkallah, M., Vanhoof, W., Jacquet, J.M.: Imple-
mentation of the k-swap heuristic in java: code and documentation (2024). https://
github.com/Vdloisem/DAPDominoGame

14. Yernaux, G., Vanhoof, W.: Anti-unification in constraint logic programming. The-
ory Pract. Logic Program. 19(5–6), 773–789 (2019). https://doi.org/10.1017/
S1471068419000188

https://doi.org/10.1108/IJPCC-04-2020-0029
https://doi.org/10.1108/IJPCC-04-2020-0029
https://doi.org/10.1108/IJPCC-04-2020-0029
https://doi.org/10.1108/IJPCC-04-2020-0029
https://doi.org/10.1108/IJPCC-04-2020-0029
https://doi.org/10.1108/IJPCC-04-2020-0029
https://doi.org/10.1108/IJPCC-04-2020-0029
https://doi.org/10.1108/IJPCC-04-2020-0029
https://doi.org/10.1108/IJPCC-04-2020-0029
https://doi.org/10.1016/j.ins.2018.04.081
https://doi.org/10.1016/j.ins.2018.04.081
https://doi.org/10.1016/j.ins.2018.04.081
https://doi.org/10.1016/j.ins.2018.04.081
https://doi.org/10.1016/j.ins.2018.04.081
https://doi.org/10.1016/j.ins.2018.04.081
https://doi.org/10.1016/j.ins.2018.04.081
https://doi.org/10.1016/j.ins.2018.04.081
https://doi.org/10.1016/j.ins.2018.04.081
https://doi.org/10.1016/j.ins.2018.04.081
https://doi.org/10.1287/opre.1040.0179
https://doi.org/10.1287/opre.1040.0179
https://doi.org/10.1287/opre.1040.0179
https://doi.org/10.1287/opre.1040.0179
https://doi.org/10.1287/opre.1040.0179
https://doi.org/10.1287/opre.1040.0179
https://doi.org/10.1287/opre.1040.0179
https://doi.org/10.1287/opre.1040.0179
https://doi.org/10.1016/j.matpr.2020.05.582
https://doi.org/10.1016/j.matpr.2020.05.582
https://doi.org/10.1016/j.matpr.2020.05.582
https://doi.org/10.1016/j.matpr.2020.05.582
https://doi.org/10.1016/j.matpr.2020.05.582
https://doi.org/10.1016/j.matpr.2020.05.582
https://doi.org/10.1016/j.matpr.2020.05.582
https://doi.org/10.1016/j.matpr.2020.05.582
https://doi.org/10.1016/j.matpr.2020.05.582
https://doi.org/10.1016/j.matpr.2020.05.582
https://doi.org/10.1108/BIJ-07-2021-0409
https://doi.org/10.1108/BIJ-07-2021-0409
https://doi.org/10.1108/BIJ-07-2021-0409
https://doi.org/10.1108/BIJ-07-2021-0409
https://doi.org/10.1108/BIJ-07-2021-0409
https://doi.org/10.1108/BIJ-07-2021-0409
https://doi.org/10.1108/BIJ-07-2021-0409
https://doi.org/10.1108/BIJ-07-2021-0409
https://doi.org/10.1108/BIJ-07-2021-0409
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1002/nav.3800020109
https://doi.org/10.1002/nav.3800020109
https://doi.org/10.1002/nav.3800020109
https://doi.org/10.1002/nav.3800020109
https://doi.org/10.1002/nav.3800020109
https://doi.org/10.1002/nav.3800020109
https://doi.org/10.1002/nav.3800020109
https://doi.org/10.34190/ecgbl.17.1.1431
https://doi.org/10.34190/ecgbl.17.1.1431
https://doi.org/10.34190/ecgbl.17.1.1431
https://doi.org/10.34190/ecgbl.17.1.1431
https://doi.org/10.34190/ecgbl.17.1.1431
https://doi.org/10.34190/ecgbl.17.1.1431
https://doi.org/10.34190/ecgbl.17.1.1431
https://doi.org/10.34190/ecgbl.17.1.1431
https://doi.org/10.34190/ecgbl.17.1.1431
https://doi.org/10.1016/0166-218X(93)00094-G
https://doi.org/10.1016/0166-218X(93)00094-G
https://doi.org/10.1016/0166-218X(93)00094-G
https://doi.org/10.1016/0166-218X(93)00094-G
https://doi.org/10.1016/0166-218X(93)00094-G
https://doi.org/10.1016/0166-218X(93)00094-G
https://doi.org/10.1016/0166-218X(93)00094-G
https://doi.org/10.1016/0166-218X(93)00094-G
https://doi.org/10.1016/j.ejor.2020.11.035
https://doi.org/10.1016/j.ejor.2020.11.035
https://doi.org/10.1016/j.ejor.2020.11.035
https://doi.org/10.1016/j.ejor.2020.11.035
https://doi.org/10.1016/j.ejor.2020.11.035
https://doi.org/10.1016/j.ejor.2020.11.035
https://doi.org/10.1016/j.ejor.2020.11.035
https://doi.org/10.1016/j.ejor.2020.11.035
https://doi.org/10.1016/j.ejor.2020.11.035
https://doi.org/10.1016/j.ejor.2020.11.035
https://doi.org/10.1016/0304-3975(82)90133-5
https://doi.org/10.1016/0304-3975(82)90133-5
https://doi.org/10.1016/0304-3975(82)90133-5
https://doi.org/10.1016/0304-3975(82)90133-5
https://doi.org/10.1016/0304-3975(82)90133-5
https://doi.org/10.1016/0304-3975(82)90133-5
https://doi.org/10.1016/0304-3975(82)90133-5
https://doi.org/10.1016/0304-3975(82)90133-5
https://doi.org/10.1007/978-3-030-72929-5_19
https://doi.org/10.1007/978-3-030-72929-5_19
https://doi.org/10.1007/978-3-030-72929-5_19
https://doi.org/10.1007/978-3-030-72929-5_19
https://doi.org/10.1007/978-3-030-72929-5_19
https://doi.org/10.1007/978-3-030-72929-5_19
https://doi.org/10.1007/978-3-030-72929-5_19
https://doi.org/10.1007/978-3-030-72929-5_19
https://doi.org/10.1007/978-3-030-72929-5_19
https://doi.org/10.1007/978-3-030-72929-5_19
https://github.com/Vdloisem/DAPDominoGame
https://github.com/Vdloisem/DAPDominoGame
https://github.com/Vdloisem/DAPDominoGame
https://github.com/Vdloisem/DAPDominoGame
https://github.com/Vdloisem/DAPDominoGame
https://doi.org/10.1017/S1471068419000188
https://doi.org/10.1017/S1471068419000188
https://doi.org/10.1017/S1471068419000188
https://doi.org/10.1017/S1471068419000188
https://doi.org/10.1017/S1471068419000188
https://doi.org/10.1017/S1471068419000188

62 G. Yernaux et al.

15. Yernaux, G., Vanhoof, W.: Anti-Unification of Unordered Goals. In: Manea, F.,
Simpson, A. (eds.) 30th EACSL Conference on Computer Science Logic. Leibniz
International Proceedings in Informatics, vol. 216, pp. 37:1–37:17. Schloss Dagstuhl
(2022). https://doi.org/10.4230/LIPIcs.CSL.2022.37

https://doi.org/10.4230/LIPIcs.CSL.2022.37
https://doi.org/10.4230/LIPIcs.CSL.2022.37
https://doi.org/10.4230/LIPIcs.CSL.2022.37
https://doi.org/10.4230/LIPIcs.CSL.2022.37
https://doi.org/10.4230/LIPIcs.CSL.2022.37
https://doi.org/10.4230/LIPIcs.CSL.2022.37
https://doi.org/10.4230/LIPIcs.CSL.2022.37
https://doi.org/10.4230/LIPIcs.CSL.2022.37
https://doi.org/10.4230/LIPIcs.CSL.2022.37

	Optimizing Bipartite Matching with Interleaved and Injective Mappings: Implementing and Evaluating the k-Swap Heuristic
	1 Introduction
	2 Setting the Stage: The Double Assignment Problem (DAP)
	3 The k-Swap Stability Abstraction
	4 Experimental Results
	5 Discussion and Future Work
	References

