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Abstract. Escape games have become widely popular across entertain-
ment, educational, and training domains, yet their underlying mechanics
remain largely informal and under-theorized. In this work, we introduce a
novel framework that provides a formal representation of both the struc-
tural and dynamic aspects of escape games. Our approach relies on the
Static Graph, a directed graph that encodes the topological and logical
organization of puzzles, clues, rooms, and player roles. Game progression
and player interaction are modeled through the Dynamic Graph, captur-
ing the live state of a session, as well as the Game Session Forest, which
represents the set of possible traces under alternative player choices. This
graph-based design can easily be manipulated by verification algorithms,
and as such paves the way for automated reasoning over essential aspects
of escape games, ranging from solvability and balance to determining the
initial constraints on players and rooms. The framework is operational-
ized and illustrated in GraphEG, an open-source visualization tool that
supports both the design of escape game scenarios and their simulation.

1 Introduction and Related Work

Escape games, also known as escape rooms, have rapidly transitioned from
a niche form of entertainment to a widespread cultural and educational phe-
nomenon. Since their emergence in the early 2000s in Japan and their interna-
tional rise through commercial adaptations like Real Escape Game and Escape
the Room, they have been adopted for various purposes, including team-building
exercises, cognitive training, and formal education [14].

Their popularity stems from a compelling mix of immersive storytelling, col-
laborative problem-solving, and time-bound challenge dynamics. In pedagogical
contexts, escape games have been shown to increase engagement, foster critical
thinking, and improve knowledge retention through experiential learning [4,15].
Frameworks such as EscapED [2] and the Star Model [3] have offered conceptual
and narrative guidelines for game-based learning.

The escape game genre has in fact been investigated through various disci-
plinary lenses, ranging from educational science to human-computer interaction
and game design theory. Nicholson’s foundational works [11] provided an early
taxonomy of escape room principles such as narrative framing, collaborative
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puzzle-solving, and time-limited challenges. Wiemker et al. [17] also proposed
classifications of puzzles and structural ideas for optimal player engagement.

Then, as the efficiency of escape games in active learning has been increas-
ingly demonstrated in independent studies [14,5], several works proposed method-
ological guidelines for integrating educational objectives within game mechanics
at the conception stage [3]. Meanwhile, in [13] and independently in [15], some
authors insist on another crucial need, being the need to model the behavior
of players during actual sessions of serious games. The existing approaches set
on tackling this aspect relied on well-known mathematical objects such as Petri
nets [1] and finite state machines [10].

However, such models tend to remain qualitative and lack expressivity when
dealing with the layered dependencies, spatial configurations, and concurrent
puzzle structures that characterize escape games. In that sense, Araújo and
Roque caution that traditional modeling languages are limited when it comes
to verifying and validating underlying game systems [1]; they then advocate
for formalisms capable of handling more complex, concurrent interactions. In
parallel, recent research in serious games (being games dedicated to serious
outcomes such as learning) also tends to identify the need for formal models that
support game design, since these can be used to enable simulation, complexity
analysis, and Artificial Intelligence (AI)-driven design [13].

Attempts to formalize serious games in a more general way did emerge in the
context of learning analytics and simulation [3]. But these apply poorly to escape
games, which still suffer a lack of formal and computable representation. This
limits their reproducibility, adaptability, and analytical potential. The internal
mechanics of escape games thus remain to this day largely informal or heuristic.

In this context, this paper proposes a novel graph-theoretical framework for
modeling escape games as dynamic, interactive systems; an endeavor that has, to
the best of our knowledge, not been performed before, except in our own seminal
work on the topic [18]. By abstracting escape games as directed graphs enriched
with semantic constraints, we enable algorithmic reasoning over the structure
and flow of gameplay. Our approach captures both the static configuration of
an escape game (e.g., rooms, puzzles, clues) as well as the permanently evolving
game state (e.g., player knowledge, progression or clues acquisition). As such, it
allows for a range of formal validation checks that can shed light on the inner
properties held by each of the modeled games.

To demonstrate the practical viability of our framework, we also introduce
the latest version of a companion software tool called GraphEG that supports
the creation, visualization, verification and simulation of escape games using the
proposed formalism.

2 A Formal Framework for Modeling Escape Games

An Escape Game (EG) can be seen as a finite, rule-driven environment where
a group of players collaborate to achieve a goal (often, ”escape”) by navigating
through interconnected rooms, solving interdependent puzzles, and discovering
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clues. More formally, we define an EG as a triple (G,A, δ). Specifically, G refers
to a Static Graph conforming with what we will further define in Section 2.1,
A is a set of potential player actions, and δ an associated transition function
that details which actions are possible in which game situations. The latter two
concepts, A and δ, will be introduced in greater details in Section 2.2.

2.1 Blueprinting with the Static Graph (SG)

We start by defining a Static Graph (SG) as a directed graph G = (V,E) where:

– V = R ∪ Z ∪ L ∪ C ∪ S ∪M is a finite set of typed vertices:
• R: room vertices, representing spatial areas in the game;
• Z: puzzle vertices, encoding the challenges to be solved;
• C: clue vertices, items and bits of information helping to solve puzzles;
• L: role vertices, modeling roles in puzzle solving or starting positions;
• S: skill vertices, representing cognitive and physical abilities needed to
solve puzzles (e.g. “trigonometry basics”);

• M : meta-information vertices, governing conditional branches, timers,
game states, and win/loss conditions. We suppose the existence of at
least one victory meta-information vertex in the set M .

– E ⊆ V ×V is the set of directed edges representing logical dependencies and
game mechanics between elements. The semantics of an edge is derived from
the types of its origin and destination vertices, and some directed relations
are prohibited, e.g. for r1 and r2 rooms and s1 a skill, the edge r1 → r2
represents a one-way path between the rooms, while r1 → s1 is not allowed.

Each vertex type plays a specific role in the game logic. A puzzle z ∈ Z
requires at least one player to perform an action. This player is represented
by a role l ∈ L which may require a set of clues {c1, . . . , cn} ⊆ C and skills
{s1, . . . , sk} ⊆ S, and is located in a room r ∈ R. Solving a puzzle may unlock
new room(s), offer new clue(s) or unveil new puzzle(s).

Now, the exact conditions on V and E that ensure that the SG is (semanti-
cally speaking) representing a valid EG are for now solely implemented in the
companion proof-of-concept software (called GraphEG), and their formal study is
left for future work. We refer the reader to GraphEG’s documentation in regard
with what is currently permitted (or not) in its underlying SG formalization, as
well as more details regarding the rules that govern the direction of the edges.

Also note that, depending on the exact setting of each escape game, new
vertex types could be incorporated in the model. This is left for future work;
GraphEG should be seen as a first instantiation of the framework, and as such
incorporates a collection of usual inherent mechanisms of escape games.

An example SG is given in graphical form in Fig. 1. Each different vertex
type has received a different coloring and shape to ease the reader’s comfort. For
any given i, a role vertex of the form Li represents a starting position while Ri
stands for a room. L0 is the standard starting position (to room R1) and L1 (to
room R2) corresponds to a specific starting position for one of the players (so
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Fig. 1. An example Static Graph (SG).

Fig. 2. A Dynamic Graph (DG) based on the Static Graph (SG) from Fig. 1

they are separated at game start). The player starting in R2 is supposed to solve
the puzzle Z1 (by taking role L1.1) to obtain access to the clue C2.1. This, in
turn, allows him to take on the role L2.1, required to solve the puzzle Z2, finally
allowing this player to open the door and join the rest of the team in R1 and R3,
two rooms with free circulation. Let us now consider the puzzle Z3: it is implied
in the graph that two roles (L3.1 and L3.2) should be endorsed simultaneously
in order to solve it. This might correspond to a situation where two players must
communicate from inside the room R3 to, e.g., activate switches simultaneously.
Si nodes correspond to skills; in the example, S2 is required to assume the
role L2.1 (and therefore the starting position L1). Finally, the meta-informative
nodes I0 (victory) and I1 (exit) respectively declare victory when no player is
left and remove players from the game when they enter R4.

As we can see, the SG component of an escape game essentially constitutes its
blueprint, conceptualizing a plan of how players can win in a step-by-step and
chronological way. Thanks to this representation, automated static analyses can
be performed. Examples include pre-computing the minimal number of different
players required to solve the game (which amounts to 2 in the example above)
as well as the detection of unreachable artifacts, dependency loops, and design
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inconsistencies; these checks are partially implemented in the application that
will be introduced later on in the paper.

2.2 In-game Modeling with the Dynamic Graph (DG)

To play the game, we add a set of players P . We can now define the Dynamic
Graph (DG), given a Static Graph (SG) G = (V,E), as a directed graph Gd =
(Vd, Ed), in which Vd is the vertex set V from SG to which we add player vertices;
each vertex is then decorated with a discovered (boolean) attribute. Ed ⊆ Vd×Vd

is the set of directed edges representing the players’ (potential) progress.
Fig. 2 illustrates an in-game snapshot based on the Static Graph from before.

The nodes that have been discovered have a bold border. Player P1 is currently
located in room R2 and possesses skills S1, S2 and S3. He carries clue C2.1.
Clue C3.2 has been discovered but not picked up1. Puzzle Z1 has been solved
(since it is discovered and no edge from Gd is pointing towards it anymore).
Player P2 is located in room R3. He carries clue C3.1 and possesses skill S1.
Z2 and Z3 have not been discovered yet; hence their absence from the DG.

From a given DG Gd, it is possible to compute an action set A(Gd) representing
the possibilities that each player has in the situation described by Gd); this
particular computation is included in the GraphEG tool introduced in the next
section; it allows to systematically generate the DG and to assess the validity of
potential player actions. Resolving an action from this set would then update
the graph according to the possibly newly discovered elements. For example,
DG from Fig. 2 would generate the action set {Explore(P1), Pickup(P1, C3.2),
Move(P2, R1), Explore(P2)}. The permissible actions also include actions of the
form Memorize(Px,Cy), Enter(Px), Drop(Px,Cy) and Attempt(Px,Zy).

Now, operationally, one would typically need to traverse the (static and/or
dynamic) graphs in order to perform formal property checks and verification. In
this case, traversing the graph implies following dependencies whose semantics
depend on the types of the connected vertices. More formally, a traversal step
along an edge (u, v) ∈ E∪Ed is permitted if and only if some semantic conditions
are satisfied with respect to the node types. For example, if u ∈ Z, then u must
be solved for it to lead to some new element v in the DG; if v ∈ R and the
player is currently in room u, then there must exist an edge (u → v) ∈ E. In the
DG, traversing to a node v additionally triggers its activation (e.g., revealing all
visible elements inside a room). Hence, a traversal of the graph corresponds to
(the verification of) a sequence of valid state transitions, as defined by the third
component of our definition of an EG.

The component in question is a transition function δ : A×Gd 7→ Gd, defining
a sequence {Gi

d}i ∈ 1..n such that Gi+1
d = δ(a,Gi

d) represents the DG obtained
upon resolving the effect of a on Gi

d. We can then consider the existence, at any
moment in a game, of a succession of (past and present) DGs and actions, called
the Game Session, and defined as

〈
G0

d, a
0, · · · , Gn−1

d , an−1, Gn
d

〉
, where ∀i ∈ 1..n:

Gi
d = δ(Gi−1

d , ai−1) ∧ ai−1 ∈ A(Gi−1
d ).

1 We refer the reader to GraphEG’s documentation for more information on this regard.
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Fig. 3. A full Game Session visualization using Git native commands

2.3 Temporal Modeling with the Game Session Forest (GSF)

While a SG allows one to statically approximate some interesting properties
regarding a given escape game, it cannot cover what occurs in practical runs
of the games. A DG represents an in-game situation, but is only a snapshot of
a practical game execution at a given point in time. Then, a Game Session
is essentially the linkage of subsequent DG that unlocks the monitoring of the
actions executed by the players from the start of the game until its resolution.

Now, to induce some properties that will or will not hold with respect to an
EG, we are interested in capturing all of the potential player progressions. To
do this, we define the Game Session Forest (GSF) as a set of trees F . Each
tree T ∈ F corresponds to the tree representation of a game session (essentially
representing alternative decision policies). In practice, the GSF’s size can be kept
reasonable using ad hoc pruning techniques. As an illustration, in Fig. 1, one
should only consider those game traces that attribute both skills S2 and S3 to
the player entering R2 through L1, since all other traces would make the game
impossible to win.

The GSF is mostly designed to allow subsequent analyses to identify solvable
paths (i.e., the existence of a trace ending in a goal state corresponding to
reaching the victory condition), but also to search for the most efficient such
trace (according to some optimization criterion) and to perform redundancy
and deadlock analysis. Additionally, it can be used to derive metrics regarding a
game’s average length or cognitive load, and to ensure e.g. that knowledge and
item distribution remain balanced across players.

3 An Overview of the GraphEG Visualization Tool

GraphEG is an open source interactive tool written in C#2 destined to be used
by game designers for building, visualizing and simulating escape games based

2 See the companion artifact at https://github.com/martin-verjans/GraphEG.

https://github.com/martin-verjans/GraphEG
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on the formalisms developed above. A first prototype version of the tool was
introduced in [18]; however, it lacked several key features. In this section, we
describe an updated version able to handle more situations and visualizations.

The GraphEG software relies on the QuikGraph and GraphViz libraries to ren-
der SGs and DGs in the DOT graph description language [6]. To represent a Game
Session Forest, the software leverages Git’s native operations. Game sessions are
represented by a branch in the repository; each commit then represents a DG, so
that tracing a session is equivalent to requesting the log for the given session or
branch. Then, the GSF can simply be retrieved as the full Git repository, includ-
ing all of its branches. Note that this allows us to take advantage of Git’s inner
representation of repositories as being, essentially, trees, as well as its capabilities
for comparing commits and pruning repository branches automatically. Fig. 3
shows a command-line visualization of the whole GSF based on this. Next to the
GSF integration, GraphEG offers two main user interfaces:

1. The Designer is the name given to the workspace that allows users to
create and edit a SG by adding and removing nodes and edges. Fig. 4 shows a
screenshot of the Designer in which we recreated the example SG from Fig. 1.
The Designer also provides basic formalism verification by preventing the
creation of forbidden edges (e.g., connecting a room to a skill) and validating
vertex consistency (e.g., a puzzle must be connected to at least one role). It
is additionally possible to save the graph or to load one from a file.

2. The Gameplay is a second interface that first requests the user to pick an
existing GSF (by selecting a Git repository) or to create a new one from a
given SG file. Then, it will display the existing Game Sessions from the se-
lected GSF or propose the creation of a new one. Finally, the user is allowed to
simulate the game. GraphEG then displays the current game state (embodied
by a DG) and details its corresponding action set. Upon selecting one of the
available actions, the user triggers an update in the DG; in that case, a new
Git commit is also created on the fly. A screenshot of the Gameplay view is
given in Fig. 5; it corresponds to the example DG given earlier in Fig. 2.

Fig. 4. A snapshot of the Designer interface corresponding to the SG from Fig. 1
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Fig. 5. A snapshot of the Gameplay interface corresponding to the DG from Fig. 2

In addition to these interfaces, GraphEG offers visualization features that fa-
cilitate the understanding of complex dependencies. For instance, different vertex
types are distinguished by color and shape, and consistency checks are reported
directly in the interface. Moreover, the possibility to display Static and Dynamic
Graphs side by side helps designers follow the evolution of a session while pre-
serving a clear overview of the underlying blueprint. Such visualization support
is crucial to make the traversal semantics and player progress more transparent,
especially for non-technical users such as educators and practitioners.

4 Discussion

This paper introduced a formal graph-theoretical framework for modeling, simu-
lating, and analyzing escape games, treating them as structured, state-driven sys-
tems governed by interdependent puzzles, spatial progression, and player agency.
Our layered representations offer a unified vocabulary for capturing both the
design-time architecture and run-time unfolding of such experiences.

The model also enables automatic reasoning tasks such as solvability check-
ing, dependency validation and balance assessment. This formalism was further
operationalized through the development of a dedicated open-source application
that allows designers to visualize, test, and iterate on game blueprints.

Despite its expressiveness and versatility, the proposed framework presents
several limitations that merit discussion. First, while offering a robust formal-
ization of structural and interactive components, it abstracts away the cogni-
tive dimension of players. Aspects such as reasoning strategies, group coordina-
tion, intuition, and trial-and-error learning are not explicitly modeled, though
they are often central to real-world escape room experiences. In the same vein,
our model does not yet incorporate mechanisms for modeling evolving stories,
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character-driven events and branching dialogue systems. This could be tackled
by incorporating e.g. logic-based storytelling structures or narrative graphs [12].

Secondly, the framework captures only discrete event sequencing, thus lacking
the richness of continuous temporal modeling such as duration-based constraints,
real-time pressure, and decay functions over time to represent more complex
scenarios. From a practical standpoint, the creation of such scenarios involving
dozens of interconnected (and timed) puzzles can become unwieldy without the
aid of a higher-level domain-specific scripting interface. Incorporating such a
feature in the GraphEG user interface, e.g. by leveraging Large Language Models
(LLMs) able to generate adequate JSON files from a textual description of the
game is an interesting avenue for further work.

Finally, while the theoretical underpinnings of the model are sound, its empir-
ical validation is still pending. We plan to tackle this by including experimental
validation and benchmarking, regarding both GraphEG’s runtime performances
and effectiveness in real-life scenarios. To achieve such measures, one can, for
example, draw upon existing structured evaluation frameworks tailored for (ed-
ucational) escape games such as the methodologies developed in [9] and [16].

5 Future Work

The limitations above in fact pave the way for interesting avenues of further
work. As a first example, following the trend of escape games used to train
critical thinking, collaboration, and active learning in educational and corporate
environments [7,5], GraphEG’s core mechanics have been chosen so that serious
games could easily benefit from our models.

Of direct use in that regard is the dynamic tracking of player paths via our
various graphs, which can straightforwardly be leveraged to extract learning
analytics. This can help instructors and designers to, e.g., identify conceptual
bottlenecks in their storytelling, or to adapt the content of their courses or
games. Such efforts to evaluate the relevance of pedagogical escape games have
been studied before (see e.g. [15]) and should benefit from the structured data
collected during a GraphEG-monitored session. Even more, the GraphEG appli-
cation naturally supports the integration of pedagogical objectives directly into
the structural blueprint of a game. This is handled by the software’s exhaustive
listing of prerequisites of a given action, clue or puzzle, and by the possibility of
encoding differentiated pathways for learners with varying skill sets.

Apart from these education-driven applications, GraphEG opens promising
intersections with other research fields. For example, thanks to its manipulation
of game traces, our framework may support the modeling of agents operating in
multi-goal and/or constrained environments arising in plan recognition and auto-
mated reasoning, two important fields in the AI landscape [8]. Human-computer
interaction may similarly benefit from our user-based modeling, which paves the
way for more adaptive interfaces, especially in immersive contexts such as those
explored in [16]. This is especially relevant in extended reality (XR) applications,
where spatial reasoning and clarity are critical [14].
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Additional future work includes the integration with automated solvers and
AI assistants, as well as the development of metrics to evaluate graph complexity,
educational efficacy, and player engagement for GraphEG-modeled games.
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