
TOWARDS A GRAPH-THEORETICAL FRAMEWORK FOR
MODELING AND ANALYZING ESCAPE GAME MECHANICS

Gonzague Yernaux, Martin Verjans and Wim Vanhoof
Faculty of Computer Science

University of Namur
Rue Grandgagnage 21, 5000 Namur, Belgium

e-mail: gonzague.yernaux@unamur.be

KEYWORDS

Escape Game Modeling, Game Mechanics Formaliza-
tion, Graph Representations, Game Analysis.

ABSTRACT

In this work, we propose a comprehensive graph-
theoretical framework to formally model the structure
and dynamics of escape games. Our approach intro-
duces the Static Graph, a directed graph encoding the
topological and logical organization of puzzles, clues,
rooms, and player roles. To capture player interac-
tion and game progression over time, we also define the
Dynamic Graph that reflects the current game session
state, along with a so-called game session forest that
encapsulates all possible execution traces depending on
player decisions. This layered representation enables
automated analysis of game solvability, balance, and
puzzle dependencies. We illustrate the framework with
a proof-of-concept visualization and simulation tool,
GraphEG. The tool supports both manual design and
runtime interaction with escape game scenarios.

INTRODUCTION

Escape games, also known as escape rooms, have
evolved from niche entertainment in Japan in the early
2000s to a global phenomenon used in team building,
cognitive training and education (Romero and al. 2021).
Their appeal lies in the combination of immersive sto-
rytelling, collaborative puzzle-solving, and time-bound
challenges, which in pedagogical contexts encourages
engagement and knowledge retention (Taraldsen et al.
2022). Existing frameworks such as EscapED (Clarke
and Peel 2017) and the Star Model (Botturi and
Babazadeh 2020) provide guidelines for integrating
educational objectives into game mechanics, to create
instances of what is often called serious games.

Apart from educational science, research on escape
games includes endeavors in human–computer in-
teraction and, more broadly, in game design theory.
Foundational taxonomies (Nicholson 2015) and puzzle
classifications (Wiemker, Elumir, and Clare 2015) exist

that address narrative framing, collaboration, and
engagement. Yet, as highlighted by Taraldsen et al.’s
recent work, many of the internal mechanics specific to
(serious) escape games remain largely informal (Tarald-
sen et al. 2022). This lack of formalization limits the
possibilities to study game reproducibility and puzzle
dependencies, among other properties that can be
approximated by static analysis.

Existing formal approaches, including Petri
nets (Araújo and Roque 2009) and finite state
machines (Kebritchi, Hirumi, and Bai 2010), partly
address player behavior and game dynamics, but these
strategies often bypass the layered dependencies, spatial
configurations and concurrent puzzle structures specific
to escape games. As noted in (Araújo and Roque 2009),
traditional modeling languages tend to struggle when
verifying and validating complex interactive systems.

To address this gap, we introduce a graph-theoretical
framework modeling escape games as dynamic, interac-
tive systems. By representing them as directed graphs
enriched with semantic constraints, we capture both
the static configuration (rooms, puzzles, clues) and the
evolving game state (player knowledge, progression).
This enables automated reasoning tasks such as solv-
ability checking, dependency validation, and balance as-
sessment. We also present GraphEG, an open-source tool
that implements our formalism for the creation, visual-
ization, and simulation of escape games.

GRAPHS AND TREES FOR MODELING KEY
ESCAPE GAME MECHANICS

An Escape Game (EG) can be seen as a finite, rule-
driven environment where a group of players collabo-
rate to achieve a goal (often, ”escape”) by navigating
through interconnected rooms, discovering clues, and
solving interdependent puzzles. Formally, we define an
EG as a triple (G,A, δ), where G refers to a Static

Graph, A a set of potential player actions, and δ a so-
called transition function that specifies how each action
impacts the game state. These concepts will be intro-
duced in greater detail in the remainder of this section.



Blueprinting with the Static Graph

We start by defining a Static Graph (SG) as a directed
graph G = (V,E) where:

• V = R ∪ Z ∪ L ∪ C ∪ S ∪ M is a finite set of
typed vertices, in which R are room vertices, rep-
resenting spatial areas in the game; Z are puz-
zle vertices, encoding the challenges to be solved;
C contains clue vertices, being bits of information
helping to solve puzzles; L holds the role vertices,
modeling roles in puzzle solving or starting posi-
tions; S are skill vertices, representing cognitive
and physical abilities needed to solve puzzles (e.g.
“trigonometry basics”); and M represents the so-
called meta-information vertices, which govern con-
ditional branches, timers, game states, and win/loss
conditions. We suppose the existence of at least one
victory meta-information vertex in the set M .

• E ⊆ V ×V is the set of directed edges representing
logical dependencies and game mechanics between
elements. The semantics of an edge is derived from
the types of its origin and destination vertices, and
some directed relations are prohibited, e.g. for r1
and r2 rooms and s1 a skill, the edge r1 → r2 rep-
resents a one-way path between the rooms, while
r1 → s1 is not allowed.

Each vertex type plays a specific role in the game logic.
A puzzle z ∈ Z requires at least one player to perform
an action. This player is represented by a role l ∈ L
which may require a set of clues {c1, . . . , cn} ⊆ C and
skills {s1, . . . , sk} ⊆ S, and is located in a room r ∈ R.
Solving a puzzle may unlock new room(s), offer new
clue(s) or unveil new puzzle(s).

Now, the exact conditions on V and E that ensure that
the SG is (semantically speaking) representing a valid
EG are for now solely implemented in the companion
proof-of-concept software (called GraphEG), and their
formal study is left for future work. We refer the reader
to GraphEG’s documentation in regard with what is cur-
rently permitted (or not) in its underlying SG formal-
ization, as well as more details regarding the rules that
govern the direction of the edges.
Also note that the model can be enriched with new
vertex types if this is required to comply with the
specifics of the considered EG. This aspect is left
for future work; GraphEG should be seen as a first
instantiation of the framework that aims to incorporate
the most usual mechanisms of escape games.

An example SG is given in graphical form in Figure 1.
Each different vertex type has received a different
coloring and shape to ease the reader’s comfort. For
any given i, a role vertex of the form Li represents
a starting position while Ri stands for a room. In

the figure’s graph, L0 is the standard starting position
(to room R1) and L1 (to room R2) corresponds to a
specific starting position for one of the players (who
are thus separated at the start of the game). The
player beginning his investigation in R2 is supposed to
solve the puzzle Z2 (by taking role L2.1) to obtain
access to the clue C1.1. This, in turn, allows him to
take on the role L1.1, required to solve the puzzle Z1,
finally allowing this player to open the door and join
the rest of the team in R1 and R3, two rooms with
free circulation (represented by double arrow edges in
the graph). Regarding the puzzle Z3, it is implied
in the graph that two roles (L3.1 and L3.2) should
be endorsed simultaneously in order to solve it. This
might correspond to a situation where two players
must communicate from inside the room R3 to, e.g.,
activate switches simultaneously. As for Si nodes, they
correspond to skills; in the example, S2 is required
to assume the role L1.1 (and therefore the starting
position L1). Finally, the meta-informative nodes I0
(exit) and I1 (victory) respectively remove players from
the game when they enter R5 and declare that the
game is successfully finished when no player is left.

As we can see, the SG component of an escape game es-
sentially constitutes its blueprint, conceptualizing a plan
of how the players can solve it in a step-by-step and
chronological manner. Thanks to this representation,
automated static analyses can be performed. Examples
include precomputing the minimal number of different
players required to solve the game (which amounts to
2 in the example above) as well as the detection of un-
reachable artifacts, dependency loops, and design incon-
sistencies; these checks are partially implemented in the
application that will be introduced later on in the paper.

Temporal Modeling with the Dynamic Graph

We now define the set of game states S as being
composed of tuples in the form (r, y, k, f), where r
is a mapping from each player p to their current
room, y and k are respectively the so-called inventory
and knowledge mappings, associating clues and/or
skills to each player, and f is a vector containing
the current states of puzzles (e.g., solved/unsolved),
clues (e.g. available/received/used) and rooms (e.g.
closed/open/entered). Similarly, permissible actions,
forming the set A that also parametrizes an EG,
include moving between (accessible and open) rooms,
interacting with a clue, a puzzle or a room, acquiring
a clue, attempting to solve a puzzle and sharing some
clue with another player.

We can finally define the third component of our
definition of an EG, being the transition function
δ : A × V × S 7→ S such that δ(a, v, s) represents
the state into which one arrives when performing the



Figure 1: An example Static Graph (SG).

action a on artifact v when being in state s. The set
of elements upon which an action can be carried out is
the set V , the same set that represents the vertices of
the Static Graph. We can then consider the existence,
at any moment in a game, of the (current) game
trace D = ⟨s0, a0, v0, · · · , sn−1, an−1, vn−1, sn⟩, where
∀i ∈ 1..n: si = δ(ai−1, si−1, vi−1).

For an EG taken as granted, its Dynamic Graph (DG)
is then defined as the directed graph GD = (VD, ED),
where the set of vertices VD is composed of those ele-
ments v from V upon which δ(s, a, v) can be applied for
some a ∈ A and in the current state s (being retrieved
as the last element of the trace D); ED ⊆ VD × VD

are directed and labeled edges, so that (v1, v2)a ∈ ED

represents the fact that a player (v1) can perform an
action a ∈ A on the artifact v2, or that being in a
room v1 allows to perform the action a on v2 (which is
typically located in the room); D represents the current
game trace, which operationally serves to update
the graph by refreshing the available actions and ar-
tifacts according to the game’s (past and present) states.

The DG can essentially be understood as a snapshot of
the available actions in the current state (and taking the
previous states into account), with vertices representing
the parts of the game that can be interacted with by
the involved players. In other words, the DG can be
understood as its static counterpart put in motion (by
making explicit how the roles endorsed by players, as
well as their actions, affect the game state). This rep-
resentation can for instance allow one to easily monitor
a given game, detect difficulty issues in certain situa-
tions, perform replay analysis, and carry out a potential
evaluation of decision paths and exploration diversity.

Covering all Paths with the Game Session Forest

While a SG allows one to statically approximate some
interesting properties regarding a given escape game,

it cannot cover some situations that occur in actual
runs of the games, nor can it give definite answers to
semantic (and, hence, undecidable) decision problems.
On the other hand, DG covers some ground of situations
that occur in real sessions, but it remains limited to
representing one step of a single execution trace at
the time. However, in order to induce some properties
that hold at the level of the whole game, we are also
interested in capturing all of the potential player
progressions. To do this, we define the Game Session

Forest (GSF) as a set of trees F . Each tree T ∈ F
corresponds to the tree representation of a game trace
under a different decision policy. Without delving into
the operational details of the GSF used internally in
GraphEG, we will merely stretch out the fact that the
GSF’s size can be kept reasonable in practice using
adequate pruning techniques. For example, in Figure 1,
the only game traces that should be considered are
these traces that attribute both skills S3 and S2 to the
player(s) entering R2 through L1, since all other traces
cannot lead to the victory meta-informative vertex.

The GSF is designed to allow analyses to identify solvable
paths (i.e., the existence of a trace ending in a goal state
corresponding to reaching the victory vertex), but also
to search for the most efficient such trace (according to
some optimization criterion) and to perform redundancy
and deadlock analysis. Additionally, it can be used to
derive metrics regarding a game’s average length or cog-
nitive load, and to ensure e.g. that knowledge and item
distribution remains balanced across players.

THE GRAPHEG VISUALIZATION TOOL

GraphEG is an open source interactive tool written in
Python that allows game designers to build, visualize
and simulate escape games based on the formalisms de-
veloped above1. At the core of GraphEG lies a declar-

1See the companion artifact at https://anonymous.4open.

science/r/GraphEG.

https://anonymous.4open.science/r/GraphEG
https://anonymous.4open.science/r/GraphEG


Figure 2: A GraphEG top-down layout with user controls.

ative JSON specification that describes a game’s struc-
ture (called a scenario). The software parses this file and
constructs graphs that are both sound in regard to the
previous section’s formalism, and that display the given
scenario with as few edge intersections as possible. The
GraphEG engine then performs a range of verifications
and alerts the user of any of the tested properties that
the model is or is not achieving. The software supports
saving game states, still in a JSON file. To ease naviga-
tion, GraphEG offers two main visualization modes:

1. a top-down layout, being an interactive interface
where users can observe and manipulate (by click-
ing) the spatial distribution of rooms, players, and
interactive elements (a snapshot of an example top-
down view is shown in Figure 2);

2. graph visualizations of the SG and the (current)
DG, as well as an additional view, called a Puzzle

Dependency Graph (PDG), associated to each puz-
zle pj ∈ P , and accessible by clicking on a puzzle’s
icon in the top-down view. This structure displays
dependencies between puzzles, clues and skills in a
more detailed (and user-friendly) way as in the SG.
It can be leveraged by the program to perform puz-
zle solvability checking, dependency visualization,
and assessment of difficulty layering, without the
burden of the other information encoded in the SG

and the DG. Figure 3 shows an example of each of
these graphs (SG, PDG and DG) side by side.

Users can interact with the top-down layout through
an action query interface composed of three selectors:
player, action, and target item. Supported actions
include interact, inspect, take, resolve, share, move,
and exit. Each action is checked against the current
game state, and validated inputs dynamically update
both the graphical interface and the underlying JSON
file, effectively implementing the function δ from the
previous section. More specifically, if the user wishes to
visualize the Dynamic Graph, the graph in question will
reflect the effect of the last action taken by the team
of players, as such depicting the current game state as

well as the set of actions that can be performed in the
state in question.

The interface also features a pop-up history displaying
(timestamped) past queries and system outputs. This
helps the user understand the logical consequences of
actions and detect invalid moves or missing information.
It is intended to be used by game masters who monitor
an actual escape game in real time: keeping the visual
representations up to date with the actions of the players
helps to keep a trace of different game sessions. This can
be useful to compare the paths taken by different teams
and to identify those parts of the game that may need
simplification or, the other way round, an increase in
difficulty. Future developments will focus on alleviating
this manual task. More specifically, the GraphEG system
could connect to actual, IoT-based escape rooms, so that
(part of) the visualization and its inner representations
automatically capture and represent the progression of
the players, without manual intervention.

CONCLUSIONS AND PERSPECTIVES

As escape games expand across platforms and disci-
plines, we believe our framework provides a robust
theoretical foundation and a practical toolkit to support
their design and analysis. Indeed, by unifying design-
time architecture and run-time evolution in a layered
representation, GraphEG already enables automated
reasoning over game structure and gameplay balance.

Beyond recreational contexts, the framework opens
avenues for serious game modeling and Artificial
Intelligence (AI) techniques such as plan recognition
and advanced automated reasoning (Ghallab, Nau, and
Traverso 2004). In human-computer interaction, our
graphs could help develop adaptive interfaces for im-
mersive applications (Romero and al. 2021; Veldkamp
et al. 2022). From a practical perspective, complex
scenarios may benefit from a higher-level scripting layer,
potentially using Large Language Models to generate
valid GraphEG scenarios from textual descriptions.

However, several limitations remain: the current model
abstracts away player cognition (reasoning strategies,
coordination, intuition), only partially represents tem-
poral dynamics (lacking continuous constraints and real-
time decay), and does not yet capture narrative evo-
lution such as branching dialogues (Riedl and Young
2006). Large-scale validation of GraphEG’s performance
and impact on gameplay is also pending; for this, we
plan to rely on structured evaluation methodologies such
as the one described in (Kabimbi Ngoy, Yernaux, and
Vanhoof 2023). Additionally, to further tackle these lim-
itations, we aim to develop a new, updated version of the
GraphEG tool that takes some of the above-mentioned
features into account. Further future work will then in-



Figure 3: An example SG (left), PDG (middle) and DG (right), as displayed in GraphEG.

clude empirical evaluation of games designed with our
software, integration with automated solvers and AI as-
sistants, and the definition of metrics for graph com-
plexity, educational efficacy, and player engagement.

References

Araújo, Manuel and Lićınio Roque (2009). “Modeling
Games with Petri Nets”. In: Digital Games Research
Association Conference. doi: 10.26503/dl.v2009i1.
493.

Botturi, Luca and Masiar Babazadeh (2020). “Designing
educational escape rooms: validating the Star Model”.
In: International Journal of Serious Games 7, pp. 41–
57. doi: 10.17083/ijsg.v7i3.367.

Clarke, Samantha and David Peel (2017). “EscapED:
A framework for creating educational escape room
games”. In: European Conference on Games Based
Learning, pp. 111–118. doi: 10.17083/ijsg.v4i3.
180.

Ghallab, Malik, Dana Nau, and Paolo Traverso (2004).
Automated Planning: Theory and Practice. Elsevier.
doi: 10.1016/B978-1-55860-856-6.X5000-5.

Kabimbi Ngoy, Rudy, Gonzague Yernaux, and Wim
Vanhoof (2023). “EvscApp: Evaluating the Pedagogi-
cal Relevance of Educational Escape Games for Com-
puter Science”. In: International Conference on Com-
puter Supported Education. SciTePress, pp. 241–251.
doi: 10.5220/0011715100003470.

Kebritchi, Mansureh, Atsusi Hirumi, and Haiyan Bai
(2010). “What do we know about computer games
and learning?” In: British Journal of Educational
Tech. 41.1, pp. 18–38. doi: 10.1111/j.1467-8535.
2009.00997.x.

Nicholson, Scott (2015). Peeking behind the locked door:
A survey of escape room facilities. White paper.

Riedl, M.O. and R.M. Young (2006). “From linear
story generation to branching story graphs”. In: IEEE
Computer Graphics and Applications 26.3, pp. 23–31.
doi: 10.1109/MCG.2006.56.

Romero, Carla and et al. (2021). “Escape rooms as in-
novative pedagogical tools for active learning: A sys-
tematic review”. In: Educational Research Review 34,
p. 100404. doi: 10.1016/j.edurev.2021.100404.

Taraldsen, Lene Hayden et al. (2022). “A review on use
of escape rooms in education – touching the void”. In:
Education Inquiry 13.2, pp. 169–184. doi: 10.1080/
20004508.2020.1860284.

Veldkamp, Alice et al. (2022). “You escaped! How did
you learn during gameplay?” In: British Journal of
Educational Tech. 53. doi: 10.1111/bjet.13194.

Wiemker, Markus, Errol Elumir, and Adam Clare
(2015). “Escape Room Games: Can you transform
an unpleasant situation into a pleasant one?” In:
Haag, J., Weißenböck, J., Gruber, W. & Freisleben-
Teuscher, C. F. (Eds.), IKON (Publisher): Game
Based Learning, pp. 55–68. isbn: 978-3-99023-411-2.

AUTHOR BIOGRAPHIES

GONZAGUE YERNAUX was born in Etterbeek,
Belgium and went to the University of Namur, where
he studied computer science, specializing in algorithms,
declarative languages and program analysis. He ob-
tained his PhD in 2025. Gonzague is also a fiction
writer, and the designer of multiple home-made escape
rooms and role-playing game scenarios.

MARTIN VERJANS is a Scada Integration En-
gineer at Luminus, a major player in the Belgian
energy landscape. He completed a Master’s degree
in Computer Science at the University of Namur.
His Master’s thesis aimed at formalising escape games
as graphs and laid the groundwork for the present paper.

WIM VANHOOF is an Ordinate Professor special-
ized in programming languages and algorithmics at the
Faculty of Computer Science of the University of Namur.
He has been the Dean of the Faculty for six consecutive
years (2019-2025).

https://doi.org/10.26503/dl.v2009i1.493
https://doi.org/10.26503/dl.v2009i1.493
https://doi.org/10.17083/ijsg.v7i3.367
https://doi.org/10.17083/ijsg.v4i3.180
https://doi.org/10.17083/ijsg.v4i3.180
https://doi.org/10.1016/B978-1-55860-856-6.X5000-5
https://doi.org/10.5220/0011715100003470
https://doi.org/10.1111/j.1467-8535.2009.00997.x
https://doi.org/10.1111/j.1467-8535.2009.00997.x
https://doi.org/10.1109/MCG.2006.56
https://doi.org/10.1016/j.edurev.2021.100404
https://doi.org/10.1080/20004508.2020.1860284
https://doi.org/10.1080/20004508.2020.1860284
https://doi.org/10.1111/bjet.13194

	INTRODUCTION
	GRAPHS AND TREES FOR MODELING KEY ESCAPE GAME MECHANICS
	Blueprinting with the Static Graph
	Temporal Modeling with the Dynamic Graph
	Covering all Paths with the Game Session Forest

	THE GRAPHEG VISUALIZATION TOOL
	CONCLUSIONS AND PERSPECTIVES
	AUTHOR BIOGRAPHIES

