TPLP 19 (5-6): 773-789, 2019. (© Cambridge University Press 2019 773
doi:10.1017/S1471068419000188

Anti-unification in Constraint Logic Programming

GONZAGUE YERNAUX and WIM VANHOOF
University of Namur, Belgium
Namur Digital Institute
(e-mail: gonzague.yernaux@unamur.be)

submitted 25 July 2019; accepted 31 July 2019

Abstract

Anti-unification refers to the process of generalizing two (or more) goals into a single, more
general, goal that captures some of the structure that is common to all initial goals. In general
one is typically interested in computing what is often called a most specific generalization, that
is a generalization that captures a maximal amount of shared structure. In this work we address
the problem of anti-unification in CLP, where goals can be seen as unordered sets of atoms
and/or constraints. We show that while the concept of a most specific generalization can easily
be defined in this context, computing it becomes an NP-complete problem. We subsequently
introduce a generalization algorithm that computes a well-defined abstraction whose computa-
tion can be bound to a polynomial execution time. Initial experiments show that even a naive
implementation of our algorithm produces acceptable generalizations in an efficient way.

KEYWORDS: Anti-unification, (most specific) generalization, CLP, program analysis

1 Introduction and motivation

Anti-unification refers to the process of computing for a given set of symbolic expres-
sions S, a so-called generalization of S, that is a single expression that captures some
of the common structure that is shared by all elements in S. For instance, in a logic
programming context, the atom p(a,Y, f(X)) can be seen as a generalization of the set
of atoms

{r(a,a, f(a)),p(a,b, f(g(c))),p(a, A, f(a))}

as each of these atoms is an instance of p(a,Y, f(X). Often, one is interested in what is
called a most specific or, equivalently, a least general generalization. That is, a general-
ization that preserves a maximal amount of common structure. In the example above,
p(a,Y, f(X)) is a most specific generalization of the three given atoms although other,
less specific, generalizations exist such as p(a,Y, X) and p(Z,Y, X). Being able to com-
pute such generalizations is a mandatory ingredient in a number of program analyses and
transformations such as partial deduction (e.g. (Gallagher 1993; De Schreye et al. 1999),
supercompilation (e.g. (Sgrensen and Gliick 1999)) and fold/unfold (e.g. (Pettorossi
and Proietti 1998)) transformations where it is typically used as a mean to guarantee
termination.

In this work we develop a theory of generalization (or anti-unification) in the context
of constraint logic programming (CLP) where - in its most declarative form - clause
bodies and goals are conceptually represented by sets of constraints and atoms. While
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some works exist on generalizing CLP, these typically focus on the underlying constraint
domain and introduce widening operators (e.g. convex hull on R) in order to generalize
the constraint set at the semantical level (e.g. (Fioravanti et al. 2013)). Other existing
works are targeted to a particular application such as learning constraints by general-
ization of samples of facts (Gutiérrez-Naranjo et al. 2003). In contrast, we take a fun-
damentally different approach and focus on generalizing the syntactical representation
of the program structures to be generalized (basically conjunctions represented by sets
of constraints and atoms), and this independent of the particular constraint or applica-
tion domain. Our main motivation for doing so is to obtain a generalization operator
that computes the maximal common syntactical structure shared by two goals or, by
extension, clauses and predicates. This is a basic operation needed in the work on clone
detection and detection of algorithmic equivalence (see e.g. (Mesnard et al. 2016)) where
one needs to frequently and rapidly compute such generalizations in order to compare
how closely related two goals or clauses are. Moreover, the generalization operator we
propose being domain- and application-independent, it could readily be integrated in
other program manipulation approaches that need to generalize CLP clauses (examples
include conjunctive partial deduction or ILP-based learning). While other more involved
generalization approaches exist, for example grammar-based E-generalization (Burghardt
2014) and regular tree abstraction (Bouajjani et al. 2006), we focus in this work on the
most specific generalization (msg) as it suits best our particular context.

Computing a most specific generalization (msg) of two or more terms (and, by ex-
tension, atoms) or other tree-like structures is straightforward and can be done in linear
time. Existing algorithms are typically based on the seminal algorithm of Plotkin (Plotkin
1970) in which two tree-structures are generalized by computing their maximal common
subtree and replacing non-matching subbranches by new variables. However, when more
involved computational structures need to be generalized (such as conjunctions of atoms,
goals and clauses), the literature is less clear on what algorithms are available to auto-
matically compute their most specific generalization. The basic problem, of course, being
that in this case one is not necessarily interested in viewing the structures that need to be
generalized as simple tree structures as that would be too restrictive. Take for instance
the conjunctions a A b A ¢ and a A ¢; when these conjunctions are considered as trees,
computing the msg would result in a A X missing the fact that also ¢ is common to both
conjunctions. Dependent on the application at hand, usually an ad-hoc technique is in-
troduced that most often boils down to applying the classical msg operation to (a subset
of) the atoms of both structures, usually preserving the order in which the atoms appear
in the structure for efficiency reasons. This is for example the case in conjunctive partial
deduction (Leuschel et al. 1998) where conjunctions are treated as sequential structures
and the abstraction operation generalizes ordered subconjunctions. This is defensible
when partially deducing Prolog programs where the order of the atoms in a conjunction
is important and usually needs to be preserved, but it nevertheless limits the possible
outcomes of the generalization operation and makes it hard to transfer the approach
towards other contexts where the order of the individual atoms or other computational
constituents might be less important.

While CLP is an important target in itself — especially given its aptitude as a universal
intermediate language for analysis and transformation (Gange et al. 2015), our general-
ization operator, basically manipulating sets of atoms, can also be beneficial in program
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transformation for classical (non-constraint) logic programming, as it allows to lift the
restriction imposed by most of the existing generalization operators to preserve the order
of the atoms in the conjunctions that are generalized.

The paper is structured as follows. In Section 2 we introduce some preliminary concepts
and notation, in Section 3 we introduce our main abstraction and algorithm, we evaluate
our approach by means of a prototype implementation discussed in Section 4 before
concluding in Section 5.

2 Preliminaries
2.1 Constraint logic programming essentials

Let us first introduce some of the basic concepts and notations that will be used through-
out the paper. A CLP program is traditionally defined (Jaffar and Maher 1994) over a
CLP context, which is a 5-tuple (X, ¥ ,.7,. %, 2), where X is a non-empty set of con-
stant values, ¥ is a set of variable names, . a set of function names, .Z is a set of
constraint predicates over X and 2 a set of predicate symbols. The sets X, ¥, %, %
and 2 are all supposed to be disjoint sets. Symbols from %, £, and 2 have an
associated arity and as usual we write f/n to represent a symbol f having arity n.
Given a CLP context ¢ = (X, 7,7, %, 2), we can define the set of terms over & as
Tg = XUV U{f(t1,t2,....tn)|f/n € .F where Vi € 1..n : t; € T }. Likewise, the set of
constraints over ¢ is defined as 6 = {L(t1,t2,....,tn)|L/n € L and Vi € 1.n:t; € T}
and the set of atoms as o/ = {p(Vi,...,V,) |p/n € Land Vi : V; € ¥}. A goal
G C (64 U o) is a set of atoms and/or constraints. We will sometimes use the notion
of a literal to refer to either a constraint or an atom. A program P is then defined over a
context € = (X, ¥, #, %, 2) as a set of constraint Horn Clause definitions where each
clause definition is of the form p(Vi,...,V,,) < G where p(V1,...,V,,) is an atom called
the head of the clause with {Vi,...,V,} all distinct variables, and G a goal called the
body of the clause. We will sometimes refer to a clause by p(V1,...,V,) «+ C, B if we
want to distinguish the set of constraints C' and the set of atoms B in its body. A fact is a
clause with only constraints in its body. For a predicate symbol p, we use def (p) to denote
the definition of p in the program at hand, i.e. the set of clauses having a head atom using
p as predicate symbol. Without loss of generality, we suppose that all clauses defining a
predicate have the same head (i.e. use the same variables to represent the arguments).

In what follows we will often consider the context to be implicit and talk simply about
a program and the predicates and clauses defined therein. Without loss of generality we
assume that the set of constraint predicates . contains at least an equality relation
represented by =. Note that in our definition of a clause, atoms contain only variables as
arguments. This is by no means a limitation, as arguments can be instantiated by means
of equality constraints in the clause body.

Different semantics have been defined for CLP. In our approach, we consider the declar-
ative semantics as in (Jaffar and Maher 1994). A constraint domain & is comprised of a
set of values and an interpretation for the relational symbols used in the underlying con-
text. Given a constraint domain &, a valuation is a mapping from variables to values and
we say that a set of constraints C' is satisfiable, noted & F C' if there exists a valuation
v with dom(v) = vars(C) such that v(C) evaluates to true. In this work we focus on the
declarative semantics of a program which is defined as a subset of %4, the latter defined
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as {p(v1,...,v,) | p/n € 2 and v; € Z}. For a program P and an underlying constraint
domain &, the immediate consequence operator T]? can be defined as a continouous
function on Ay as follows (Jaffar et al. 1998):

p(Vi,...,V,) < C, B a renamed apart clause in P
TE(I) =< pvg,...,v0) v a valuation on & such that 7 F v(C) and v(B) C I
Vie{l,...,n}:v; =0v(V;)

The semantics of a program P, which we will represent by [P] can then be defined as
the least fixed point of Tg . In what follows, we will often simply refer to the semantics
of a program without specifying the underlying constraint domain or CLP context. The
semantics of a goal G with respect to a program P and a set of variables V.= {V;,..., Vi }
occurring in G is then defined as {gp(v1,...,v;) € [P']} where P’ is the program P to
which a clause ¢p(V7,..., V%) < G has been added with ¢p a special predicate symbol
not occurring in P. Slightly abusing notation, we will use [[G]]‘I; to denote the semantics of
the goal G w.r.t. the program P and the set of variables V', or simply [G]v if the program
is clear from the context. While in practice CLP is typically used over a concrete domain,
we will make abstraction of the concrete domain over which the constraints are expressed,
as our generalization theory only considers the syntactical structure of the constraints
(and not their semantics).

2.2 Generalization principles

For any program expression e (be it a term, a constraint, an atom or a goal), we use
vars(e) to denote the set of variables that appear in e. As usual, a substitution is a
mapping from variables to terms and will be denoted by a Greek letter. For any mapping
o, dom(o) represents its domain, img(o) its image, and for a program expression e and
a substitution o, eo represents the result of simultaneously replacing in e those variables
V that are in dom(o) by o(V). A renaming is a special kind of substitution, mapping
variables to distinct variables (i.e. being injective). For a renaming p, we use p~! to
denote its reverse. Two expressions e; and ey are variants if and only if e;p = e3 and
e1 = egp~ ! for some renaming p. For an expression e, a fresh renaming of e is a variant
of e where all variables have been renamed to new, previously unused variables. Given
the notion of a renaming, we can easily define a quasi-order relation between goals as
follows.

Definition 1 (Generalization)

Let G and G’ be goals. We say that G is more general than (or, synonymously, is a
generalization of) G’, denoted G <X G, if and only if there exists a renaming p such that
Gp C @

Hence, a goal is more general than another goal if the former is a subset of the latter
modulo a variable renaming. While our notion of generalization is simple and purely of
syntactic nature, it is in line with what one could consider to be a generalization at the
semantic level, since generalizing a goal corresponds to removing computational units
(constraints or atoms).

FEzxzample 1
Consider the goal G = {p(X,Y),X = a,Y = b}. Then the goals {p(X,Y),X = a},
{p(X,Y)}, {p(A,B)} and {p(X,Y),Y = b} are all generalizations of G.
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In a more traditional logic programming context, an atom is typically defined as more
general than another atom if the latter can be obtained from the former by applying a
substitution (Benkerimi and W. Lloyd 1990; Sgrensen and Gliick 1995) and generaliz-
ing an atom is done by replacing terms with new variables. Since in our context, atoms
are represented in simple form (i.e. all arguments being variables), the same effect can
be obtained by removing constraints from the goal. Note that our definition is, at the
same time, more general, as it allows to generalize a goal also by removing atoms. In a
traditional logic programming context where goals are conjunctions of atoms, one need
to resolve to higher-order generalization techniques in order to obtain the same effect.
Also observe that in our generalization scheme, constants and functors are impossible
to generalize through variabilization, because renamings are mappings from variables to
variables only. This is a fundamental difference of relation < with the #-subsumption re-
lation of (Plotkin 1970), the latter being defined by substitutions rather than renamings.
Our relation is a first-order generalization (higher-order terms as well as predicate names
can’t be generalized) with firm constants and functors.

Defining generalizations with injective mappings (i.e. renamings) rather than arbitrary
mappings from ¥ to ¥ as in #-subsumption ensures that some variable V' cannot be gen-
eralized by two (or more) distinct variables in the computed generalization. If renamings
weren’t injective, a generalization could have many more variables than the goals it gen-
eralizes; in that case, the generalization could contain variables that are no longer linked
on the semantic level such as new variables occurring only once. For many domains, the
injective property makes more sense, not allowing variables to lose their semantics once
generalized.

Ezample 2

Let us consider G = {X > 2, X < 10} where we suppose the constraints are over some
numerical domain. In our framework, the three following generalizations are correct:
{4 >2,A <10}, {A > 2}, {A < 10}. Without the restriction to injective renamings,
{A > 2, B < 10} would also be a valid generalization.

In practice, some domain-specific constraint predicates and functional operators could
be characterized as commutative (such as = and + for numeric instances), which would
affect their generalizations. The approach presented in this paper could easily be ex-
tended to take this property into account, but for the sake of clarity we will keep the
approach purely syntactic on that point of view, only considering non-commutative sym-
bols in textual representations of constraints. Despite their differences, our generalization
relation shares the following property with the usual 8-subsumption order from (Khardon
and Arias 2006).

Proposition 1
The generalization relation < is a quasi-order.

Proof

We need to prove that =< is transitive and reflexive. Reflexity is immediate since for any
goal G C G and, thus, G < G. For transitivity, consider three arbitrary goals G1, G2 and
G35 such that G; < G2 and G5 = G3. Then by definition 1, there exist Ay, Ay, p1 and po
such that Go = G1p1 U A1 and G3 = Gaopa U As. Or, equivalently,

Gs = (Gip1 UA)p2 UAgy = Gipip2 U (A1pa UAy)
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Since the composition of two renamings is a renaming, and the union of two sets a set,
it follows that G =< Gj. ]

Generalized goals are linked by their semantics as stated in Proposition 2 below.

Proposition 2
Let P be a program and G and G’ goals. If G < G’ such that Gp C G’ for some renaming
p, then for any set of variables V' C wvars(Gp), we have that [Gp]v 2 [G']v.

Proof

The proof is trivial given that Gp C G’. Indeed, suppose that G’ is composed of a set of
constraints C’ and a set of atoms B’. Then, if v is a valuation on the underlying domain
2 such that Z F v(C") and v(B’) C [P], then there exist some predicate symbol ¢ such
that g(v(V1),...,v(V)) € [G']. Now, since G’ = Gp U A for some set of constraints
and/or atoms A, it holds that 2 F v(C') for the constraints C C Gp and v(B) C [P] for
the set of atoms B C Gp. Consequently, g(v(V1),...,v(Vi)) € [Gp]. O

We can now define the computational structure that is shared by a set of goals through
the concept of common generalization.

Definition 2 (Common generalization)
Let {G1,Ga,...,Gi} be a set of goals. Then a goal G is a common generalization of
{G1,G3,....,Gi}ifand only if Vi € 1.k : G =< G;.

In what follows we will mostly consider common generalizations of two goals. Note that
at least one common generalization exists for any two goals: the empty set which can be
seen as the most general generalization, i.e. the minimal element in the quasi-order <.
But obviously the empty set is not an interesting generalization to express similarities in
groups of literals. In what follows, we are interested in computing what we call a most
specific generalization, that is a maximal element with respect to <. A most specific
generalization is also sometimes called a least general generalization.

Definition 3 (msg)

Let G be a common generalization of S = {G1,Ga,...,G,}. Then G is a most specific
generalization (msg) of S if there does not exist another common generalization of S,
say G', such that G < G' and G' £ G.

Note that, by definition, a common generalization of two goals G; and G5 is a variant
of both a subset from G; and of a subset from Gs. Without loss of generality, we will
often consider a common generalization to be a subset of one of the goals, as in the
following example.

FExample 3
Let us consider the goals

Gr={f(X),9(X),9(Y)}  G2={f(R),9(T)}

G = {f(X),9(Y)} € Gy is a common generalization of {G1,G2}, as there exists
p=[X < R)Y < T] such that G; = Gp, so G =< Go; it also holds that G C Gy,
so G = G1. Moreover, G is an msg of {G1,G2} as no strictly less general common
generalization exists, G having generalized all literals in G2. Note that G is also an msg
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of {G1,G>}, which can as easily be proved. In fact, by Definition 1, any variant of G is
also an msg for G; and Gs.

Contrary to the case of traditional logic programming, where the most specific gener-
alization of two goals is unique (modulo a variable renaming) (Benkerimi and W. Lloyd
1990), in our context two goals may typically have several most specific generalizations.

Ezxzample 4
Let us consider the goals

G1 :{f(X)’g(Y>7h(XvY)} GQZ{f(R)ag(U)vh(TaS)}

{f(X),9(Y)} and {h(X,Y)} are both msgs of {G1,G2}. Indeed, each of these general-
izations doesn’t allow the addition of any more literals while remaining a valid common
generalization of G; and G3, due to the injectivity of the generalization renamings. The
two msgs are thus incomparable, <-wise.

Amongst the msgs of a set of goals, some generalizations could only have a few literals,
thereby capturing less common structure than others. Ideally, we are interested in those
most specific generalizations that are of maximal cardinality.

Definition 4 (mcg)
Let G be a common generalization of S = {G1,Ga, ..., G, }. Then G is a mazimal common
generalization (mcg) of S if there does not exist another common generalization of S,

say G', such that |G| > |G].

It is trivial to show that a maximal generalization G of a set of goals S is also a most
specific generalization of S. Indeed, if it weren’t the case, it would, by Definition 3, be
possible to add some literal to G and get a more specific generalization. But the latter
generalization would have strictly greater cardinality than G, so G cannot be maximal.
However, computing a maximal common generalization is an intractable problem. The
reason is, of course, due to the fact that we need to match unordered sets of literals rather
than sequences, whereas the classical subsumption-based formulation from (Plotkin 1970)
is computable in polynomial time.

In order to show this formally, we define a decision problem variant which we name
MCGP (Maximal Common Generalization Problem) that we show to be NP-complete.
The decision problem variant MCGP boils down to verifying whether there exist a renam-
ing p such that the smallest of two goals is in itself a maximal common generalization of
both. Formally: given two goals G and Gy with |G| < |G2| and vars(G1)Nvars(G2) = 0,
verify whether there exists p such that G1p is a subset of G.

Theorem 1
The MCGP problem is NP-complete.

Proof
It is easy to see that MCGP is in NP: given renamed apart goals G; and G5 as well as a
renaming p, the application of p on all the literals in G; will either yield a subset of G5
or not, which can be verified in polynomial time.

We will now perform a reduction from the Induced Subgraph Isomorphism Problem
(ISTP) which is stated as follows (Systo 1982). Given two unoriented and unweighted
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graphs, (V1, Eq) and (Va, Ey), where for each graph (V;, E;), V; denotes the set of vertices
and E; the set of edges between vertices from V;. Assuming, moreover, that |V;| <
|V3|, then ISIP is the problem of deciding whether (Vi, E;) is isomorphic to an induced
subgraph of (V4, E5) meaning there exists a (total) injective function f : V; — V5 such
that Vz,y € V4, there is an edge (x,y) € F; if and only if there is an edge (f(z), f(y)) €
Es5. The problem is known to be NP-complete (Systo 1982).

We can transform any instance of ISIP into an instance of MCGP as follows. Given
the graphs (V4, Eq) and (Va, Es) (with |V1] < |Va]), we define goals

Gh1 = {node(V,) |z € Vi} U{edge(V,,V,) | (z,y) € Er}
G2 = {node(V,) | z € Vo} U{edge(Vy,Vy) | (z,y) € Es}

In these goals, we suppose that node is a unary predicate representing nodes and
edge a binary predicate representing edges between nodes. Given a node = we use a
variable named V, to represent this node in the goal. If G; and G2 have at least one
variable’s name in common, considering a renamed apart version of GG; rather than G,
itself will ensure that the obtained instance of MCGP is valid. Using this scheme, the
transformation from graphs into goals can obviously be done in polynomial time. We will
now prove that this transformation preserves the positive and negative instances of ISIP,
that is (V1, F1) is isomorphic to an induced subgraph of (Va, E9) if and only if G; is an
mcg of {G1,Ga}.

(=) Let us suppose that (V, Ey) is isomorphic to an induced subgraph of (Va, F5). In
other words there exists an injective function f : V; — V5 such that Vo, y € Vi, there
is an edge (x,y) € E; if and only if there is an edge (f(z), f(y)) € E2. We have to
show that G is an mcg of G; and G5. Obviously the existence of f implies the ex-
istence of a renaming p : vars(G1) — vars(Gs) defined as p = {(V,, V) | (z,y) € f}.
Since f is a total injective function, we have that for each node(V,) € Gy there
is node(Vyp) € Go and, by definition of f, for each edge(V,,V,) € E; there is
edge(Vyp, Vyp) € Go. In other words G p is a subset of G and, hence, G is a gen-
eralization of G5 and, consequently, a maximal common generalization of {G1, G2 }.

(<) The other way round, suppose that G; is an mcg for {G1,G2}, implying there
exists a renaming p such that Gip C Ga. Given that dom(p) = wvars(Gy) and
that p is injective by definition, we can define a function f : Vi +— V5 as f =
{(z,y) | (V4,V,) € p} that is injective as well. Now, dom(f) = Vi (i.e. f is total)
since there is a node(V,) € G; for each vertex x € Vi. Moreover, since G1p C Ga, we
have that for each edge(V,,V,) € G there exists edge(V,p, V,p) and, consequently,
we have that Va,y € Vi, there is an edge (z,y) € E; if and only if there is an edge
(f(z), f(y)) € E2 concluding the proof that Gy is isomorphic to an induced subset
of Go. [

3 Anti-unification algorithm

In the following we restrict ourselves to generalizations of two renamed apart goals -
each of them being a set of literals. To construct a generalization of goals G; and G5 our
algorithm basically needs to search for a subset of G that is also a subset of G5 (modulo
a variable renaming) and vice versa. To represent these matching subsets, the algorithm
will use an injective mapping ¢ C G; x G5 that associates literals from G; to matching

Downloaded from https://www.cambridge.org/core. IP address: 104.227.178.137, on 09 Oct 2019 at 21:19:53, subject to the Cambridge Core terms of use, available
at https://www.cambridge.org/core/terms. https://doi.org/10.1017/51471068419000188


https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068419000188
https://www.cambridge.org/core

782 G. Yernaux and W. Vanhoof

Ezxample 7

Consider G; = {a(X,Y,Z),b(X),c(Z),d(Z)} and Gy = {a(A,B,C),a(C,B,A),
b(C),c(A),d(C)}. Then, when ¢ is constructed by mapping a(X,Y,Z) to a(4, B,C),
the largest generalization mapping that ¢ can grow to is {(a(X,Y,Z),a(A, B,C)),
(d(Z),d(C))} or, equivalently, the generalization {a(X,Y, Z),d(Z)}. However ¢ is not
1-swap stable. Indeed, mapping a(X,Y,Z) to a(C,B,A) instead would give rise to
{(a(X,Y,Z),a(C, B, A)), (b(X),b(C)), (c(Z),c(A))} or, equivalently, the larger general-
ization {a(X,Y, Z),b(X),c(Z)}.

Obviously, if a generalization ¢ between goals G; and G5 is k-swap stable for all
k € N, then ¢ is a maximal and thus most-specific generalization. This is in line with the
intuition that as k& grows, any k-swap-stable generalization has increased stability and
thus increased accuracy (in number of generalized literals).

One more concept needs to be introduced before we can define our algorithm for
computing k-swap stable generalizations, namely an operator that allows to combine two
generalizations into a single generalization.

Definition 7 (Enforcement operator)

Let G; and G5 be two renamed apart goals. The enforcement operator is defined as the
function < : (Gy x G2)? — (G1 x G3) such that for two generalizations ¢ and ¢’ for
G and Ga, ¢ <1 ¢’ = ¢ UM where M is the largest subset of ¢ such that ¢/ UM is a
generalization of G and Go.

In other words, ¢ < ¢ is the mapping obtained from ¢ U ¢ by eliminating those pairs
of literals (A, A’) from ¢ that are incompatible with some (B, B’) € ¢’ either because it
concerns the same literal(s) or because the involved renamings cannot be combined into
a single renaming.

Ezxzample 8

Consider ¢ = {(a(X,Y),a(A, B)), (b(X),b(A))}, a generalization of two goals G; and Gs.
Suppose ¢ = {(¢(Y),c(C))} is also a generalization of G; and G5. Enforcing ¢’ gives
p<¢’ = {(b(X),b(A)), (c(Y),c(C))}. Indeed, this can be seen as forcing Y to be mapped
on C; therefore the resulting generalization can no longer contain (a(X,Y),a(A, B)) as
the latter maps Y on B.

Algorithm 1 represents the high-level construction of a k-swap stable generalization of
goals G; and Gs. In the algorithm, we use gen(G1,G2) to represent those literals from
G1 and G5 that are variants of each other, formally gen(G1,G2) = {(A, A")|A € G1, A" €
Go and Ap = A’ for some renaming p}. In each round, the algorithm tries to transform
the current generalization ¢ (which initially is empty) into a larger generalization by
forcing a new pair of literals (A4, A’) from gen(G1,G2) in ¢, which is only accepted if
doing so requires to swap no more than k elements in ¢. More precisely, the algorithm
selects a subset of ¢ (namely ¢,) that can be swapped with a subset ¢¢ of the remaining
mappings from gen(Gp,G2) that are not yet used such that the result of replacing ¢
by ¢¢ in ¢ and adding (A, A’) constitutes a generalization. Note how condition 1 in the
algorithm expresses that ¢, must include at least those elements from ¢ that are not
compatible with (A4, A"). The search continues until no such (A, A’) can be added.
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Algorithm 1 Computing a k-swap stable generalization ¢ for goals G; and G5
|
repeat
select (A, A") € gen(G1,G2)\ &, ds C ¢, pc C (G1 x Ga)\ (¢U{(A, A")}) such that:
(1) ¢s 20\ pa{(A, A"}
(2) lgs| <k
(3) [¢c| = |os
(4) ¢\ ds Upg U{A, A'} is a generalization of G and G4
if such (A, A"), ¢, ¢s are found then
¢ o\ o Upa U{(4,A")}
until no such (4, A"), ¢g, ¢s are found

Even if the algorithm as formulated is non-deterministic and does not specify how
(A, A'), ¢s or ¢ are computed (we will come back to this), it can easily be seen that it
computes a generalization that is k-swap stable.

Theorem 2
Given renamed apart goals Gp, G2 and a constant k € N, the generalization computed
by Algorithm 1 is k-swap stable.

Proof

Given goals G1, G5 and constant & € N, Algorithm 1 can be seen as computing a sequence
of generalizations ¢°, ..., ¢" where each (¢') represents the value of ¢ at the end of the
i-th loop iteration. The generalization ¢ is then the final value in this sequence, i.e.
¢ =o".

The proof is by contradiction. Suppose that ¢ = ¢™ is not k-swap stable. By definition,
this means that there exists a k-swap extension ¢y, of ¢ such that |¢g| > |¢| and ¢r D ¢/,
with ¢ a k-swap of ¢. Consequently, there exist generalizations ¢s, ¢/, and ¢, such that
¢ = (6\ 6s) U, and ¢ = g \ v, with || = 6| < k and |¢,| > 1. Then, by taking
¢ = ¢, and (A, A’) € ¢, the conditions of in the algorithm are satisfied, contradicting
the fact that the algorithm’s execution would end with ¢™. ]

For a given value of k, Algorithm 1 computes thus a k-swap stable generalization,
at least if an exhaustive search is performed in each round of the repeat loop in order
to find a couple (¢s, @) that allows to transform ¢ into a strictly larger generalization
(p\ds)UpcU{(A, A")}. Even if this exhaustive search is implemented, it is not hard to see
that for a given and constant value of k, the algorithm executes in time ¢'(M®*), where
¢ is a constant and M proportional to |gen(G1, Gs)|. Note how the exponent depends
on k, which is a constant parameter unrelated to the size of the goals to generalize (the
input). Therefore the execution time of the algorithm is polynomially bounded.

By aiming to improve some initial solution at each iteration, Algorithm 1 is an anytime
algorithm: as such, in concrete implementations one could retrieve the n-th generalization
computed by Algorithm 1 when it is interrupted at iteration (n + 1). The n-th general-
ization may not be k-swap stable, but it is assured to be a generalization of size n. Also
note that being inherently non-deterministic, the algorithm is by no means guaranteed to
find the largest, or most convenient, k-swap stable generalization. In order to somewhat
steer the search towards a promising generalization, we introduce the concept of a quality
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estimator, i.e. a function that associates a value in R to any couple of matching literals
(A, A") € gen(G1,G2). The general idea behind this function being that the higher the
value associated to a couple (A4, A’), the higher the probability that (A, A’) is an element
of a maximal common generalization.

Definition 8 (Quality estimator)
Given goals G; and Gs, a quality estimator is a function QG162 . gen(G1,Gs) — R.
When goals G; and G5 are unambiguously identified, we will simply write (2.

A typical implementation of Algorithm 1 will thus loop through the potential couples
(A, A”) € gen(G1,G2) in descending order of their Q-values. If €2 is a perfect oracle — in
the sense that it associates maximal values to those couples that constitute an meg — then,
obviously, Algorithm 1 computes this mcg. In practice, however, Q will be a heuristic. In
our implementation, which we elaborate on in Section 4, we use the following heuristic
Q-function.

Example 9

An intuitive yet efficient quality estimator is the function that maps a couple (A4, A")
to the multiplicative inverse of the number of conflicts the couple has with other cou-
ples (i.e. the involved renamings being incompatible). Let ¢ denote the set {(B,B’ ) €
gen(G1,G2)|(B,B') # (A, A') A{(A, A"),(B, B')} is not a generalization}. We then de-
fine Q¢1:¢2(A; A’) as (|| + 1)~%. The "+1” term is only meant to avoid division by
Zero.

A quality estimator acts as an indicator of the interest of having a couple (A4, A’)
into the generalization ¢ under construction. It will naturally segment the couples in
gen(Gy, G2) into subsets with different quality (£2) values, guiding our algorithm as to
which couples should or should not be part of the generalization. Now, inside the main
loop of Algorithm 1, the same estimator function can be used to guide the search for the k-
swap - in particular the mappings ¢ and ¢« - rather than computing these by exhaustive
search. Algorithm 2 provides such a concrete search procedure based on Q. Given a couple
of atoms (A, A’) and a generalization ¢ under construction, the algorithm searches for a
suitable ¢ and ¢¢ that could be used as a k-swap to continue the construction of the
generalization by Algorithm 1.

The search process of Algorithm 2 is conceptually analogous to an A* search. The
mapping ¢, is initialized with the part of ¢ that is incompatible with the pair of atoms
(A, A") we wish to enforce into the generalization. Its replacement mapping ¢¢ is initially
empty and the algorithm subsequently searches to construct a sufficiently large ¢¢ (the
inner while loop). During this search, S represents the set of candidates, i.e. couples from
gen(G1,Gz) that are not (yet) associated to the generalization, and compy . g, (S)
represents the subset of S of which each element could be added to ¢ \ ¢s U ¢ such
that the result is a generalization (i.e. there is no conflict in the associated renamings).
In order to explore different possibilities by backtracking, the while loop manipulates
a stack GS that records alternatives for ¢g with the corresponding set S for further
exploration.

Now, in order to steer the search process, only candidate couples having an 2-value
within the best W are considered for further exploration. We therefore define max{) (U)
(resp. mingy (U)) as denoting the subset of U composed of those couples that have an
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Algorithm 2 Selecting ¢ and ¢¢ for a given (A, A')
GS «+ {}
BS + {}
¢c « {}
¢s < o\ pa{(4,4")}
S <« gen(G1,G2) \ p<{(A,A")}
while |¢G| < |¢s| and |¢s| <kdo
while |¢¢| < |¢s| and ﬁ(comp¢\¢su¢c(5’) ={}and GS ={}) do
For all p € maXSV)V(compM%U% (S)) : push(GS, (pc Up, S\ {p}))
(¢c, S) « pop(GS)
if [¢pc| < |¢ps| then
For all p € ming) (¢ \ ¢) : enter(BS, ¢, U {p})
if BS # {} then
os < exit(BS)
¢a < {}
S <= gen(G1,Ga) \ (9 U{(4, A")})

else

return L
if |¢c| = |¢,| then
return ¢, ¢

else
return L

associated {2-value among the W highest (resp. lowest) qualities of elements in U. In this,
W is a parameter of the algorithm that can be used to control the degree of backtracking.
If W = oo backtracking is performed over all possible alternatives (exhaustive search),
whereas when W = 1 only the couples with the best (or worst) {2-value are considered for
use. Note that even when exhaustive search is used (W = o0), the algorithm considers
the most promising couples (those with the highest Q-values) first.

If the search for ¢ was without a satisfying result (i.e. no ¢¢ is found equal in size
to ¢s), the algorithm continues by removing another couple from ¢ (thereby effectively
enlarging ¢). The rationale behind this action is that there might be a couple in ¢ that
is “blocking” the couples in S from addition to ¢. In order to steer the removal of such
potentially blocking couples, a couple from minQW(qb \ ¢s) is selected, and alternatives
(those having an Q-value among the W worst) are recorded in a queue (BS). Note the
use of a queue (and its associated operations enter and exit) as opposed to the stack GS.

The process is repeated until either |pg| = |¢s| in what case we have found a suitable
k-swap, or until |¢s| > k in what case we have not, and the algorithm returns L.

4 Prototype evaluation

In order to experimentally evaluate both the result and performance of our ap-
proach, we have made a prototype implementation of Algorithms 1 and 2 in Prolog’.

L Source code is available at https://github.com/Gounzy/CLPGeneralization.
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The implementation uses the quality function 2 defined in Example 9. Our evaluation
consist in computing k-swap stable generalizations for a considerable set of test cases
(pairs of goals) that have been generated randomly according to certain criteria. In par-
ticular, we have defined 6 problem classes, the characteristics of which are represented
in Table 1.

Table 1. Classes of randomly generated anti-unification problems

class Variables Literals Variable combinations Literal matchings

1 5-10 5-15 < 60,000 < 40,000

2 6-10 10-15 60,001-360,000 40,001-210,000

3 9-10 15-20 360,001-3,600,000 210,001-9,000,000

4 10-12 15-20 3,600,001-17,000,000 9,000,001-17,000,000

5 10-15 15-20 17,000,001-175,000,000 17,000,001-175,000,000
6 10-18 15-22 175,000,001-1,750,000,000 175,000,001-1,750,000,000

Table 1 provides, for each problem class, a row containing the admissible (ranges of)
values that were used when generating a test case (Gp,G2) belonging to that class.
The columns "Variables’ and "Literals’ denote, respectively, the number of variables and
literals that are allowed in the generated goals. The column ’Variable combinations’
denotes the total number of mappings that must exist between the variables of G; and
the variables of G5. In a similar vein, the column "Literal matchings’ denotes the number
of subsets of gen(G1,Gs) (excluding those mapping a single literal more than once), as
such representing an upper bound on the number of potential generalizations of G; and
Gs. Note that these parameters (in particular the latter two) guarantee that each test
case exhibits a certain complexity for the anti-unification algorithm and the parameter
values of each class are chosen in such a way to have ascending complexities both with
respect to the number variable combinations and literal matching possibilities that could
potentially need to be explored by the algorithm. The generated literals are all atoms
that are built using three test predicates f/1,¢/2 and h/3. Real-life applications would
typically harbor a higher number of literal symbols, but less symbols tend to increase the
anti-unification complexity of the generated goals, making them more of a challenge for
our algorithm. Also note that although being built on a CLP formalism, the test instances
are by no means intended to depict real-life Constraint Satisfaction Problems (CSP).
They rather represent batches of anti-unification instances as could arise in semantic
clones detection (Mesnard et al. 2016) where one typically needs a fast and efficient
anti-unification algorithm capable of handling a multitude of goals in a reasonable time.

Ezxample 10

The following is an example of a generated test case, verifying the constraints of
class 2 in Table 1. It presents 72,000 anti-unification possibilities and 181,440 possi-
ble variable combinations. Gi = {f(A), f(C), f(F),9(C,G),9(I,E),g(I,F),h(A, A, C),
h(B,F,D),h(C, A, A), (D, E,C),h(F,A,C),h(F,E,H),hG,G,B),h(G,I,I)}

G2 ={f(J), f(K), f(P),g(N,L),g(N,N),g(0,J),h(K, M, J),h(K, P, M)}

Table 2 summarizes the results of our experimental evaluation. Four incarnations of
our algorithm were tested, computing k-swap stable generalizations for k = 0, k = 2,
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k = 4 and k = oo. Each incarnation is represented in the table by, respectively, Qy,
Qy, Q4 and Q.. For each incarnation, we have fixed W = 1 in order to severely limit
backtracking to alternatives having the same -value. While minimal backtracking is of
course advantageous for the execution time, it is at the same time the most demanding
setting when testing the accuracy and relevance of the k-swap stability concept. To
compare the execution times, we have also implemented two naive brute-force algorithms,
denoted in the table by mcgpp and mcg g, that compute an meg either by exhaustively
enumerating all possible renamings (mcgpp) or all possible literal matchings (meg )
and retaining the largest generalization that was thus found.

For each of the 6 problem classes, one thousand examples were generated verifying the
constraints of the class. Each algorithm was executed over all 1000 examples and Table 2
displays their average execution time (in milliseconds). As expected, the execution time
is higher for larger values of k, and grows with the complexity of the problems that are
dealt with. However, for all classes but the simplest, the execution time of our algorithm
(even in the case where k = o0) stays well below the execution time of the brute-force
algorithms. For the more complex problem classes, the difference amounts to several
orders of magnitude and remains more than manageable (in the millisecond range), even
with & = co. Only for the simplest of test cases (problem class 1) our algorithm shows
an overhead caused by trying out some k-swaps more than once. As a side note, between
the two brute-force algorithms mcg g is in general the slowest because it has in general
an enormous amount of variable mappings to explore, while mcgy  is more often able to
cut exploration paths when encountering incompatible literal matchings during its mcg
construction process.

In order to test the accuracy of our abstraction, for each example we compared the
size of the computed k-swap stable generalization with the size of computed by the
naive algorithms. For each problem class and algorithm incarnation, Table 2 displays the
average size of the computed k-swap stable generalization expressed as a percentage of
the size of the corresponding mcg. As can be expected, the accuracy grows for larger
values of k but is, on average, never below 80% of the mcg even for the most simple
and greedy incarnation of our algorithm (). Note that in the case of Q, the average
accuracy is below 100% while in theory Q. should compute an mcg. This is of course
due to the fact that W = 1, meaning that not enough backtracking is performed in order
to compute an mcg in all cases. These are nevertheless quite promising results.

While the use of average times and accuracy might be criticized, it is noteworthy that
for all problem classes and algorithms the standard deviation between the execution times
was less than 20% of the average value and less than 10% in the case of the accuracy.

In conclusion, these simple experiments show that our abstraction performs quite well:
although it will in general not compute the mazimal common generalization, it will find
relatively large generalizations in a tractable time (generally even impressively fast when
compared to a brute-force approach), even when the overall anti-unification complexity
is high.

5 Conclusions and future work

In this work, we have established a theory of anti-unification (or generalization) in the
context of Constraint Logic Programming. When goals are considered as sets of atoms and
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Table 2. Average execution times (in milliseconds) and average size relative to an mcg

(in %)

class mcgppr  McYpa Qo Qs Qu Qoo

4.66 1.11 048 97.4% 1.39  99.4% 2.05  99.9% 3.13  99.9%
639.15  154.56  7.76 84,8% 2831 96.2%  56.55 98.3%  63.81 98.6%
4240  701.57 10.88 838% 4355 953%  91.39 98.0% 104.06 98.2%
11800 2890 18.38 81,6%  71.26 93.9% 156.73 97.3% 206.22 97.4%
26150 7640 24.72 84.1%  91.07 94,2% 196.56 96.5% 249.33 97.5%
431260 37930 46.84 80.4% 127.14 934% 271.94 95.7% 3772 96.9%

DU W N =

constraints, the problem of computing their maximal common generalization becomes an
intractable problem, a result that we have formally proved. We have introduced an ab-
straction of the maximal common generalization, namely a k-swap stable generalization,
that can be computed in polynomial time. We have defined a skeleton algorithm that is
parametric by k and that allows to steer the generalization by a heuristic function 2. We
have shown our algorithm to provide promising results on a set of randomly created test
cases. Its parameters should be tuned to achieve the best trade-off between output mcg
size (by increasing k and/or W) and time performance (by decreasing k and/or W), de-
pending on the application at hand. Future work should investigate the exact interaction
between parameters k and W: when not able to find an mcg, the responsible parameter
is, in our current prototype, not clearly identified. While the heuristic function {2 we have
used in our prototype implementation seems to perform quite well and results in overall
large generalizations, other heuristic functions can be envisioned, possibly in function of
the application at hand.

In further work, we also aim at integrating the notions developed in this paper into a
framework for clone detection or algorithmic equivalence recognition such as (Mesnard
et al. 2016) that uses CLP clauses as an intermediate program representation. Having
an efficient generalization algorithm is a necessary ingredient that allows to compute
the similarity between program fragments. We expect that our generalization concept
and algorithm can be integrated in such a framework such that it would allow to steer
the underlying transformation process. In that context, we intend to conduct a more in-
depth empirical study of the two algorithms presented in Section 3. We will in particular
investigate the complexity of Algorithm 2 that in practice depends on the branching
factor induced by the quality estimator at hand.

Direct applications of our generalization algorithm include other transformational ap-
proaches on CLP programs, in particular those where computing generalizations is a
means to obtain finiteness of the transformation, an example being partial deduction of
CLP programs. Our anti-unification theory is a general and domain-independent frame-
work. As such, it can likely be incarnated and enforced by incorporating and integrating
domain-specific widening operators, which is another topic for future work. Moreover,
depending on the context, generalizations can be considered maximal or most-specific
based on other criteria than just cardinality, a simple example being the amount of lit-
eral arguments captured in the common generalization. This is especially relevant when
arities can widely vary from one literal to another, and constitutes a topic for future
research on other generalization strategies.
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