
S. Costantini, E. Pontelli, A. Russo, F. Toni,
R. Calegari, A. D’Avila Garcez, C. Dodaro, F. Fabiano,
S. Gaggl, A. Mileo, (Eds.): ICLP 2023
EPTCS 385, 2023, pp. 41–54, doi:10.4204/EPTCS.385.5

© G. Yernaux & W. Vanhoof
This work is licensed under the
Creative Commons Attribution License.

A Dataflow Analysis for

Comparing and Reordering Predicate Arguments

Gonzague Yernaux
Namur Digital Institute

Faculty of Computer Science
University of Namur, Belgium
gonague.yernaux@unamur.be

Wim Vanhoof
Namur Digital Institute

Faculty of Computer Science
University of Namur, Belgium
wim.vanhoof@unamur.be

In this work, which is done in the context of a (moded) logic programming language, we devise a
data-flow analysis dedicated to computing what we call argument profiles. Such a profile essentially
describes, for each argument of a predicate, its functionality, i.e. the operations in which the argu-
ment can be involved during an evaluation of the predicate, as well as how the argument contributes
to the consumption and/or construction of data values. While the computed argument profiles can
be useful for applications in the context of program understanding (as each profile essentially pro-
vides a way to better understand the role of the argument), they more importantly provide a way to
discern between arguments in a manner that is more fine-grained than what can be done with other
abstract characterizations such as types and modes. This is important for applications where one
needs to identify correspondences between the arguments of two or more different predicates that
need to be compared, such as during clone detection. Moreover, since a total order can be defined
on the abstract domain of profiles, our analysis can be used for rearranging predicate arguments and
order them according to their functionality, constituting as such an essential ingredient for predicate
normalization techniques.

1 Introduction

When writing code, subroutines (be it methods, procedures, functions or predicates) and their arguments
play an important role, as they constitute the main mechanism by which the programmer can make
his or her code modular and general and thus applicable in different contexts. While this is true in
any language, it is even more so in declarative languages where modularity is often more fine-grained,
resulting in lots of small functions and predicates, and where the lack of iterative control structures makes
induction-based control (which itself heavily relies on argument manipulation) the rule rather than the
exception [11]. In this work we consider logic programming and thus predicates as the program’s main
building blocks.

Understanding the source code of a predicate requires thus understanding the role of the arguments
involved, and the data flow relations expressed within the code. If one pursues debugging purposes
for instance, statically inferring upon which potential instructions (or, in a logic programming context,
atoms) each argument does or does not have influence is crucial to better understand the program at
hand [14, 24]. While dataflow analysis is a well-known and indispensable ingredient in applications such
as code comprehension [13], compiler optimization [3] and automatic parallelization [17], its potential
has, to the best of our knowledge, been less explored in applications such as code normalization, anti-
unification and clone detection [18, 19] which is the prime motivation for the current work.

Indeed, when comparing predicate definitions during clone detection or anti-unification, one wants to
detect as many (dis)similarities as possible [27]. It is then often important to consider the right matching

http://dx.doi.org/10.4204/EPTCS.385.5
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

42 A Dataflow Analysis for Comparing and Reordering Predicate Arguments

between the respective arguments, as the following somewhat contrived example shows. Consider the
traditional definition of the append/3 predicate and another predicate, concat/3:

append ([] , L , L) .
append ([X | Xs] ,Y , [X | Zs]) : − append (Xs , Y, Zs) .

c o n c a t (L , [] , L) .
c o n c a t ([E | Zs] , [E | Es] ,Y) : − c o n c a t (Zs , Es ,Y) .

Intuitively it is clear that the two predicates define essentially the same ternary relation, where one
argument is the concatenation of the two others. The code of the two predicates differs not only in
the names of the variables used, but also in the role played by the arguments. Indeed, for an atom
append(t1,t2,t3) to succeed, t3 must be the concatenation of t1 and t2 whereas for concat(t1,t2,t3) to
succeed, it is t1 that must be the concatenation of t2 and t3. For an analysis to detect that one of these
predicates is a "clone" – a textual variant (renaming) of the other modulo a permutation of the arguments,
it needs to consider potentially all possible argument permutations which adds a non-negligible factor to
the complexity of the detection process. In fact, the search for a so-called argument mapping (designating
the pairing of corresponding arguments in two predicates) that maximizes the outlined similarity of the
involved definitions is one of the key factors rendering a search-based clone detection procedure or, more
broadly, the computation of so-called predicative anti-unification intractable [28]. This is especially true
when the predicates to be compared are composed of more than a few clauses, since for each suitable
argument mapping, there might exist a large number of potential clause mappings that should be explored
to find a functional link between the predicates to be compared.

It is not hard to see that the problem of finding a suitable argument mapping can be alleviated by
taking adequate abstractions into account. Type- and mode information, for instance, can substantially
reduce the number of argument mappings to consider, at least if a sufficient number of arguments are of
different type and/or mode. In the example above type information does not really help (as all arguments
are supposed to be of the same list type), but using mode information allows to limit the search for
corresponding arguments to the subset of input, respectively output arguments of each predicate.

In a more general setting, the question is related to the problem of reordering the arguments in a
standard (and preferably unique) way such that arguments playing a similar role (in different predicates)
are positioned in similar positions. Ordering arguments is an important aspect of code normalization, a
process that, generally speaking, aims at restructuring and simplifying code fragments or programs into
some kind of normal or canonical form [5, 2] Again, while type and mode information can be used to
classify arguments, it is generally not sufficient to sort all of the arguments in a unique way.

In this work, we introduce the notion of an argument profile being an abstract characterization of
how that argument is used within the predicate and we devise an analysis capable of computing such
profiles. Our approach encompasses, to some extent, type and mode information, but goes further by
incorporating into the abstract domain the operations in which the argument participates. While the
result of our analysis is not guaranteed to identify each and every argument by a unique value, examples
show that it is capable of distinguishing between arguments much more precisely than approaches using
only type and mode information.

2 Basic Concepts and Notations

In this paper we consider a simple logic language L where predicates, clauses, atoms and terms are
used and defined in a style similar to that of Prolog. The language is however moded and represents,

G. Yernaux & W. Vanhoof 43

as such, certain similarities with (a subset of) Mercury [12]. We assume given a finite set of variables
V , a finite set of functor symbols F and a finite set of predicate symbols P . As usual variables in V

are strings starting with an uppercase letter while functors and predicates from F , respectively P are
written p/n where p is a string starting with a lowercase letter or symbol called the name of the functor
(resp. predicate) and n ∈ N its arity, i.e. its number of arguments. We will ease notation by supposing
that if a predicate (or functor) p/n exists in the program, then no predicate (or functor) p/m with m 6= n

can exist, so that a predicate (or functor) p/m will sometimes simply be referred to as p. The set of terms
constructed from V and F is denoted T . A term t ∈ T is said to be ground if it contains no variables.

A program is defined as a set of predicate definitions, where each predicate is defined by a set
of clauses. For simplicity, we will consider only definite clauses, that is each clause is of the form
H ← B1, . . . ,Bn where H is an atom denoted the head of the clause, and B1, . . . ,Bn a conjunction of
atoms denoting its body. We furthermore assume that the head of a clause contains only variables as
arguments (all unifications are made explicit in the body) and that all clauses defining a predicate share
the same head. For a predicate p we will use def (p) to denote the set of clauses in its definition and
args(p) to denote the sequence of its formal argument variables. With a slight abuse of notation we
denote by args(p)i the ith formal argument of p (i being a number between 1 and the arity of p). For any
given program construction c, be it a predicate, a clause, an atom or a clause head, we denote by vars(c)
the set of variables occurring in c. We will suppose that each atom in the program is uniquely identified
by a natural number from N that will be referred to as the atom’s program point in the program.

We will restrict ourselves to programs that are directly recursive to ease the analysis formulation and
obtain concrete and efficient results [7]. Without loss of generality, we will also assume that clause bodies
are in some standard, flattened, form in which each atom is either a predicate call having only variables
as arguments, or a unification between variables and/or terms in which each term has only an outermost
functor (its arguments being variables). We consider our language to be moded: each argument appearing
in a clause’s head is characterized as being either input or output. The argument modes restrict the usage
of the predicate in the sense that any call to the predicate must provide a fully instantiated (ground) value
for the input arguments, whereas each output argument will be a free variable that is guaranteed to be
bound to a ground value upon success of the call. Likewise, unifications are moded as well.

Definition 1. A moded unification is an atom in one of the following forms.

• V ⇒ f (X1, . . . ,Xn), called deconstruction, where V is supposed to be input and X1, . . . ,Xn output. It

succeeds if the value bound to V has f/n as an outermost functor in which case it binds X1, . . . ,Xn

to the values figuring in the arguments of f/n.

• V ⇐ f (X1, . . . ,Xn), called construction, where V is supposed to be output and X1, . . . ,Xn input.

The construction succeeds if during evaluation f (X1, . . . ,Xn) is a ground value that can be bound

to the free variable V .

• V ↔W, called test, where both V and W are supposed to be input. The test succeeds if both V and

W are bound to identical ground values.

• V := W, called assignment, where V is supposed to be output, and W input. The assignment

succeeds if W is bound to a ground value that can be assigned to the free variable V .

Given these constructions and the moded context, our predicates do to some extent resemble what
are called procedures in Mercury [12].

Example 1. If we represent lists in the usual way, by a functor nil representing the empty list and a func-

tor cons/2 for list construction, the predicate app/3 below, to be used in a mode (input,input,output)

44 A Dataflow Analysis for Comparing and Reordering Predicate Arguments

realizes the classical ground list concatenation operation in L . The first two arguments are thus sup-

posed to be input, the third one output. The subscript numbers represent the atoms’ program points.

app(X ,Y,Z) ← X ⇒1 nil,Z :=2 Y.
app(X ,Y,Z) ← X ⇒3 cons(E,Es),app4(Es,Y,Zs),Z⇐5 cons(E,Zs).

In the remainder of the paper, we will use A to represent the set of atoms (predicate calls and
unifications) as they can occur in the program text, i.e. in the flat form defined above. For an atom
A ∈ A , we denote by in(A) the input arguments of A and by out(A) its output arguments. Note that
this only concerns variables, i.e. for any A ∈ A we have in(A) ⊆ vars(A) and out(A) ⊆ vars(A). As
usual, a substitution is a mapping from variables to terms and applying a substitution θ to a syntactical
construct e, written eθ , denotes the construct obtained by simultaneously replacing in e all variables from
the domain of θ , denoted dom(θ), with their corresponding value. Given substitutions θ and σ , their
composition θ ◦σ is also written as θσ . A renaming ρ : V 7→ V is a special kind of substitution as it is
an injective (and idempotent) mapping between variables.

We suppose that programs, when executed, behave in a mode-correct way, meaning that if an instance
of an atom (be it a unification or a predicate call) is selected for resolution, the arguments in the atom’s
input positions are bound to ground values, whereas the arguments in the output positions are unbound
variables. To formalize the semantics of our language, we thus introduce the notion of a mode-correct
instance.

Definition 2. Let A ∈ A be an atom (predicate call or unification). We say that A′ is a mode-correct

instance of A if and only if there exists a substitution θ such that A′ = Aθ and

(1) ∀X ∈ in(A) : θ(X) is a ground term;

(2) ∀X ∈ out(A) : θ(X) is a free variable if X ∈ dom(θ).

The semantics of the moded unifications defined above can easily be defined as follows:

Definition 3. Let U ∈A denote a unification and Uθ (for some substitution θ) a mode-correct instance.

Then we say that Uθ succeeds with answer θ ′ if and only if the following holds:

• If U is of the form X ⇒ f (Y1, . . . ,Yn) it holds that θ(X) = f (t1, . . . , tn) and θ ′ = {Y1/t1, . . . ,Yn/tn}.

• If U is of the form X ⇐ f (Y1, . . . ,Yn) it holds that θ ′ = {X/ f (θ(Y1), . . . ,θ(Yn))}.

• If U is of the form X ↔ Y it holds that θ(X) = θ(Y) and θ ′ = /0.

• If U is of the form X := Y it holds that θ ′ = {X/θ(Y)}.

The operational semantics of a program is defined in function of a query as usual.

Definition 4. Given a program P, let Q be a query of the form← A1, . . . ,An. We say that a query Q′ is
derived from Q with answer θ if and only if one of the following conditions holds:

1. A1 is a mode-correct instance of a unification that succeeds with answer θ , and Q′ is the query

← (A2, . . . ,An)θ .

2. A1 is a mode-correct instance p(t1, . . . , tn) of the head H = p(X1, . . . ,Xn) of a (renamed apart)

clause H ← B1, . . . ,Bk ∈ P and Q′ is the query ← (B1, . . . ,Bk,A2, . . . ,An)θ where it holds that

θ = {X1/t1, . . . ,Xn/tn}.

The above definition is basically equivalent to a traditional SLD-resolution step (with a leftmost
selection rule) except for the explicit handling of the (moded) unifications and the limitation to resolving
mode-correct instances of atoms only. Next, we can define the notion of a derivation as a sequence of
individual derivation steps.

G. Yernaux & W. Vanhoof 45

Definition 5. Given a program P and query Q0. A derivation for Q in P is a sequence of queries

and substitutions Q0
θ0→ Q1

θ1→ . . .
θn−1
→ Qn such that Qi is derived from Qi−1 with answer θi−1 for each

1 ≤ i ≤ n. If Qn is the empty query ⋄ then we say that the derivation is successful and has associated

computed answer substitution θ0θ1 . . .θn−1.

Again, our notion of a derivation is essentially equivalent to an SLD-derivation with a left-to-right
selection rule. However, as a consequence of the simple mode system, all computed answers are ground
substitutions.

3 Argument and Predicate Profiles

The analysis described in the next section essentially interprets a well-moded logic program and registers
the encountered operations into special sets called interaction sets that will in the end allow to define a
so-called profile for each of the predicate’s arguments. The key idea of this section is to formalize the
values that will be computed and manipulated by our analysis.

First, let us abstract n-ary computations by the dataflow relations that are exhibited between the
arguments of a predicate, each dataflow relation being annotated by the set of operations that participate
in the relation. Among the operations of interest are the basic unification operators defined by the set B

as follows:
B = {:=,↔}∪

⋃

f∈F

{⇐ f ,⇒ f }

For a given argument, we will represent a single dataflow relation it participates in by means of an o-set,
the latter being essentially a tuple (o, j) in which o represents a subset of operations (from a given set
of admissible operations, like B above) and j a natural number representing the position of one of the
(other) arguments. More formally:

Definition 6. Given a set of operations S, we define the set of o-sets over S as

OS(S) = {(o, j) |o ∈ P(S) and j ∈ N}

In general, an argument participates in more than one dataflow relation, relating it to several other
arguments (each time by means of a set of operations). To represent such a set of dataflow relations, we
introduce the notion of an argument profile. Intuitively, an argument profile for the i’th argument of p/n

denotes a set of dataflow dependencies with some of the other arguments of p, where each dependency
is represented – through an o-set – by the set of operations linking both arguments. Formally, we define
the notion of an argument profile for an n-ary operation as follows:

Definition 7. Given a set of operations S and n∈N, we define an argument profile for an n-ary operation

with respect to S as a set A ⊆ OS(S) where for each (o, j) ∈ A we have that j ∈ {1, . . . ,n}. We will use

APn(S) to represent the set of all possible argument profiles for an n-ary operation with respect to S.

Example 2. The following is an argument profile: {({⇒cons, :=},2),({⇐cons},3)}. It represents the

fact that the concerned argument is involved through a deconstruction in a list, and an assignment, with

the value of the argument in position 2. It also helps building the argument in position 3 through a list

construction atom.

The above definitions are fine as long as we restrict ourselves to using operations from a fixed set
of operations such as B. However, it is worthwhile to include among the allowed operations also those
operations defined (by means of predicates) in the program itself. We will not include the predicates

46 A Dataflow Analysis for Comparing and Reordering Predicate Arguments

as such in the set of admissible operations as it would make the domain too dependent on the names
chosen for the predicates at hand. Rather, we will use abstractions of these predicates – notably those
abstractions our analysis aims to compute. As such, the basic idea is to represent an n-ary operation (or
predicate) by means of a term ψ(α1, . . . ,αn) where the α are argument profiles. A special term ψ⊥ is
introduced in order to represent an operation for which no argument profiles are known; in the analysis
it will be used to represent direct recursive calls. Since these ψ-based terms use argument profiles that
themselves can contain ψ-based terms, we define the set of all possible abstract operations as the least
fixed point of the following operator R:

Definition 8. Given a set of operations S, we define

R(S) = B∪{ψ⊥}∪
⋃

n∈N0

{ψ(α1, . . . ,αn) |αi ∈ APn(S)}

While lfp(R) contains some infinite terms, all terms created by our analysis will be of finite size, as
will be made clear further down. In the following we use APn to refer to the set of all possible argument
profiles for an n-ary operation with respect to OS(lfp(R)). We will refer to the elements of lfp(R) in
which a ψ appears as ψ-based operations.

In order to obtain argument profiles, the analysis will compute data flow relations within a predicate,
annotated with the operations that are encountered upon establishing the relation. We thus define an
interaction as being the association of an input variable and an output variable with a set of operations
and the program points these operations are occurring at. Formally:

Definition 9. Let p be a predicate in a program P. An interaction in p is a mapping vars(p)×vars(p) 7→

P(lfp(R)×N). Notation-wise, we will typically write V
O

V̂ to represent an interaction between a

variable V and another variable V̂ through a set O⊂ lfp(R)×N.

In order not to overload our notation, when writing interactions, we will usually drop the program
points and consider the sets of operations in an interaction to be a multiset O⊂ lfp(R). We will thus allow
doubles in the set, assuming they are operations implemented by atoms located at different program
points. We will only occasionally include program points explicitly when needed in order to explicitly
distinguish between identical operations coming from different atoms.

An important characteristic of the set of interactions describing a predicate is that for each pair
of variables, there is at most a single interaction between these variables present in the set. Another

characteristic is the fact that for any interaction V
O

V̂ it holds that V̂ cannot be an input argument, since
mode-correct input arguments cannot be constructed by computations in a predicate’s body. V does not
have such a limitation, as long as V and V̂ are distinct. More formally:

Definition 10. For a predicate p, we call a well-defined interaction set for p a set φ of interactions in

p such that for all V,V̂ ∈ vars(p) it holds that if there exists V
O

V̂ ∈ φ for some O, then the following

conditions all hold:

1. V 6= V̂ ;

2. ∄V
O′

V̂ ∈ φ : O′ 6= O;

3. V̂ ∈ args(p)⇒ V̂ is an output argument.

We will use ISetp to denote the set of all well-defined interaction sets for a given predicate p. In
case p is clear from the context, we will use the shorter notation ISet. Now we define the following
quasi-order allowing to organize ISetp in a lattice.

G. Yernaux & W. Vanhoof 47

Definition 11. Let p be a predicate. For φ1,φ2 ∈ ISetp we say that φ1 is more precise than φ2, denoted

φ1 ⊑ φ2, if and only if ∀V
O

V̂ ∈ φ1 : ∃V
O′

V̂ ∈ φ2 such that O⊆ O′.

That is, φ1 ⊑ φ2 when each interaction appearing in φ1 labeled by an operation set O is matched by an
interaction in φ2 that is labeled by an operation set being a superset of O, and φ2 may contain interactions
involving pairs of variables that are not linked by an interaction in φ1. We now define the following
operator.

Definition 12. For a predicate p, let φ ∈ ISetp and let V
O

V̂ be an interaction for p. Then we define

(V
O

V̂) ⊔ φ =







{V
O

V̂}∪φ if ∄(V
O′

V̂) ∈ φ for some O′

(φ \{V
O′

V̂})∪{V
O∪O′

V̂} otherwise

Note that adding an interaction to a well-defined interaction set results in a well-defined interaction
set. It can also be easily seen that when constructing a well-defined interaction set, the order in which
the individual interactions are added has no influence on the final result. Consequently, we can extend
the ⊔ operator such that it merges two well-defined interaction sets:

Definition 13. Let φ and φ ′ be well-defined interaction sets for a predicate p. Then we define φ ⊔φ ′ as

the following well-defined interaction set: φ ⊔φ ′ =
⊔

V
O

V̂∈φ

(V
O

V̂)⊔φ ′.

Proposition 1. For a predicate p, (ISetp,⊔) is a join semi-lattice.

Proof. We need to prove that for a predicate p, the ⊔ : ISetp× ISetp 7→ ISetp operation is idempotent,
associative and commutative. This follows directly from the definition of ⊔ (being essentially a union
operation on sets of interactions and possibly on sets of operations) and the fact that the union operator
on sets is itself idempotent, associative, and commutative.

The induced partial order, namely ⊑, is such that φ ⊑ φ ′ if and only if φ ⊔ φ ′ = φ ′, so that we
get a partially ordered set (ISetp,⊑) in which each subset {φ1, . . . ,φn} has a least upper bound, namely
⊔{φ1, . . . ,φn}. The partially ordered set has a minimal element, namely the empty set {} which we will
refer to by ⊥ as it is a unit for the join operator: ∀φ ∈ ISetp :⊥⊔φ = φ ⊔⊥= φ . The maximal element
⊤p ∈ ISetp is the set containing all possible interactions between each argument and all the (other) output
arguments.

The goal of our analysis is to compute, for each predicate p in a given program P, a well-defined
interaction set for p. This element of ISetp will be such that it only reflects the interactions between
variables V,V̂ such that V,V̂ ∈ args(p). Such an element is what we will call a predicate profile.

Definition 14. Given a program P and a predicate p defined therein. A predicate profile for p is a well-

defined interaction set φ of interactions in p such that for all V
O′

V̂ ∈ φ we have that V and V̂ are

formal arguments of p, that is {V,V̂} ⊆ args(p).

We can "decompose" a predicate profile into individual argument profiles as follows:

Definition 15. Given a program P, a predicate p in P, and a predicate profile φ for p, we define the

argument profile of the i’th argument of p with respect to φ as the following set of o-sets:

αi = {(O, j) |Vi
O

Vj ∈ φ}

where Vi = args(p)i and Vj = args(p) j. Moreover, we define the computed argument profile of p with

respect to φ as the sequence 〈α1, . . . ,αn〉.

48 A Dataflow Analysis for Comparing and Reordering Predicate Arguments

Recall that, based on such computed argument profiles, our objective is to reorder the predicate
arguments, preferably in a unique way. As a first observation, note that it is not hard to define a total
order on AP as the following example illustrates.

Example 3. For an argument profile α ∈AP, let us define the features of α as the vector (#α ,o,m,s,r,c,d)
with o the total number of operations contained in α , r the number of ψ-based operations in it, c, a, d its

number of constructions, assignments and deconstructions respectively. Denoting by (0) a vector filled

with zeroes, we define the total order ≤ as the operator such that for any two argument profiles α1 and

α2 with respective features t1 and t2, the following holds:

α1 ≤ α2⇔ t1− t2 = (0)∨ the first non-zero dimension in t1− t2 is positive

While the order of Example 3 is somewhat arbitrary and not necessarily capable of producing a
unique order, its definition is independent of the analyzed program. In the following section, we construct
our analysis that takes a total order ≤ on AP as a parameter. Given such an order ≤, for a predicate p

with some profile φ , we will use opr(φ) to represent a profile of p ordered by ≤ with respect to φ .

Definition 16. Given a predicate p/n, a profile φ and a total order ≤. Let 〈α1, . . . ,αn〉 be the argument

profile of p with respect to φ . Then we define the ordered profile of p with respect to φ as a permutation

〈α ′1, . . . ,α
′
n〉 of 〈α1, . . . ,αn〉 such that αi ≤ αi+1 for all 1≤ i < n.

4 A Dataflow Analysis Computing Argument Profiles

The analysis will basically compute what we call an environment which is a mapping from predicates
to well-defined interaction sets that represent the already computed interactions between the predicate’s
formal arguments. We will use the symbol Φ : P 7→ ISet to represent such an environment. The analysis
is defined by induction on the syntactic structure of the program’s predicates. We start by defining
the analysis of an individual atom. It basically incorporates the operations of interest into interactions
involving local variables as well as arguments. The analysis is parametrized by the current environment
Φ and a total order ≤ capable of ordering a predicate profile φ into opr(φ).

Definition 17. Let P be a program of interest. The atomic analysis function A : A 7→ (P 7→ ISet) 7→ ISet

is defined as the function that returns, given an atom A and an environment Φ, a set of interactions

composed by those operations from lfp(R) that are found occurring in A:

AJV ⇒ f (Y1, . . . ,Yn)KΦ =
⊔

i∈1..n

{V
{⇒ f }

Yi}

AJV ⇐ f (Y1, . . . ,Yn)KΦ =
⊔

i∈1..n

{Yi

{⇐ f }
V}

AJV :=W KΦ = {W
{:=}

V}

AJV ↔W KΦ = {}

AJq(Y1, . . . ,Ym)KΦ = Φ(q)ρ ⊔φq

where ρ = {args(q)1/Y1, . . . ,args(q)m/Ym}

and φq =
{

Yi
o

Yj |Yi ∈ in(q(Y1, . . . ,Ym)),Yj ∈ out(q(Y1, . . . ,Ym))
}

in which o =

{

ψ⊥ if it is a directly recursive call

ψ(opr(Φ(p))) otherwise

G. Yernaux & W. Vanhoof 49

In the definition, we apply a renaming ρ to a set of interactions Φ(q), which consists in replacing each
variable V from dom(ρ) occurring in Φ(q) by ρ(V). Using opr(Φ(p)) allows the ψ-based operations
occurring in an argument profile to describe atoms based on similar operations by means of normalized
values. For instance, as will be made clear later on, whether a predicate makes a call to app/3 or to a
variant of it where some arguments are swapped, the resulting ψ-based operation will be the same.
Example 4. The following are applications of our function A on atoms that appear in the predicate app

from Example 1. We consider given an environment Φ0 that maps app on ⊥.

AJX ⇒ cons(E,Es)KΦ0 = {X
{⇒cons}

E,X
{⇒cons}

Es}

AJZ⇐ cons(E,Zs)KΦ0 = {E
{⇐cons}

Z,Zs
{⇐cons}

Z}

AJapp(Es,Y,Zs)KΦ0 = {Es
{ψ⊥}

Zs,Y
{ψ⊥}

Zs}

Extending the analysis function to clauses is relatively straightforward as it suffices to analyze each
of the body atoms, joining the results using ⊔. However, we need to include a transitive closure operator
that allows to combine the interactions resulting from the analysis of the individual atoms such that the
resulting interactions represent – where possible – data flow between arguments rather than involving
local variables.
Definition 18. Let p ∈P and φ ∈ ISetp. Let T : ISet 7→ ISet denote the following operator

T (φ) = {X
O∪O′

Z |X
O

Y,Y
O′

Z ∈ φ for some distinct X ,Y,Z ∈ V }

and let clT (φ) denote the transitive closure of T on φ , that is the smallest relation on φ that contains T

and is transitive. Then the projection of φ onto the arguments of p is denoted by πp(φ) and defined as

πp(φ) = {X
O

Y ∈ clT (φ) |X ,Y ∈ args(p)}.

For a given φ ∈ ISet, the transitive closure clT (φ) can always be computed by merging into φ those
interactions that can be seen as transitive interactions, i.e. interactions that concern three different vari-
ables X ,Y,Z in the way described in the Definition above. The number of these transitive interactions is
inevitably finite, being proportional to the number of combinations among a finite number of variables.

The analysis of a complete program consists in repeatedly analyzing each and every clause of the
program with respect to the current environment, computing as such an updated environment that incor-
porates the results of the current analysis round.
Definition 19. Let P be a program and p ∈ P a predicate of interest. The predicate analysis function S :
P 7→ (P 7→ ISet) 7→ ISet is defined as the function that returns, given a predicate p and an environment

Φ, a well-defined interaction set for p:

SJpKΦ =
⊔

h←a1,...,an∈def (p)

πp(
⊔

i∈1...n

AJaiKΦ)

Note the effect of the different join operations. First, the interaction sets resulting from the analysis
of the individual atoms in a clause body are combined (using the innermost join). The outermost join
combines the interaction sets resulting from the different clauses, after projection, into a single interaction
set. The projection onto the arguments of the predicate is important, as it avoids the construction of
spurious interactions caused by the same local variable that might be used in different clauses. The fact
that local variables are ignored in the result of the formula above is no limitation, since the operator S
is used below to compute the successive environments, and our analysis uses the environment solely for
exploiting the interactions among arguments.

50 A Dataflow Analysis for Comparing and Reordering Predicate Arguments

Algorithm 1 Analyzing a program P

PS← P, i← 0,Φ0←
⋃

p∈P{ (p,⊥)}
while leafs(PS) 6= /0 do

select p ∈ leafs(PS)
while (SJpKΦi)(p) 6= Φi(p) do

Φi+1← SJpKΦi

PS← PS \ {p}
i← i+ 1

Example 5. Let us consider again the predicate app from Example 1. A round of our analysis for app is

partially depicted in Example 4, its result being SJappKΦ0 = {Y
{:=,ψ⊥}

Z,X
{⇒cons,ψ⊥⇐cons}

Z}, which

corresponds to the projection on X, Y and Z of the following computed interactions:

{Y
{:=}

Z,X
{⇒cons}

E,X
{⇒cons}

Es,X
{ψ⊥}

Z,Y
{ψ⊥}

Z,E
{⇐cons}

Z,Zs
{⇐cons}

Z}

Now, to analyze a program from scratch, we start from an initial environment Φ0 in which each
predicate is associated to an initial interaction set⊥. The predicates are subsequently analyzed according
to their position in the program’s call graph in a bottom-up manner, that is prioritizing those predicates
that contain no calls to predicates except maybe themselves or predicates that have previously been
analyzed. We will denote by leafs(P) the set of such eligible predicates in a program P. Each time a
predicate’s analysis reaches a fixpoint, the analysis proceeds to the next eligible predicate. The process
is repeated until every predicate has been considered. It is depicted in Algorithm 1.

Example 6. Let us resume the analysis of app/3 started in Examples 4 and 5, where we obtained an

environment value, say Φ1, after one analysis round. A second round of the analysis will only differ in

the handling of the atom app(Es,Y,Zs):

AJapp(Es,Y,Zs)KΦ1 = {Y
{:=,ψ⊥}

Zs,Es
{⇒cons,⇐cons,ψ⊥}

Z}

After merging and projection on the arguments, we obtain Φ2 such that

Φ2(app) = {X
{⇒cons,⇐cons ,ψ⊥}

Z,Y
{⇐cons,:=,ψ⊥}

Z}

where the⇐cons operation linking Y to Z is obtained by the fact that we have both Y
{:=}

Zs and Zs
⇐cons

Z in the computed interactions set. Any subsequent analysis round would not alter this environment, so

that the analysis is finished for app.

Let us now consider that our program is also constituted of a moded version of the concat/3 predicate

introduced in Section 1:

concat(A,B,C) ← B⇒6 nil,A :=7 C.
concat(A,B,C) ← B⇒8 cons(I, Is),concat9(As, Is,C),A⇐10 cons(I,As).

Analyzing concat yields the interactions {B
{⇒cons,⇐cons ,ψ⊥}

A,C
{⇐cons ,:=,ψ⊥}

A}. Now using ≤, the

ordered profiles of both predicates are one and the same, namely

〈{({⇒cons,⇐cons,ψ⊥},2)} ,{({:=,ψ⊥,⇐cons},2)}〉

which corresponds to the respective profiles of X/B, Y/C and Z/A. In other words, reordering the

arguments according to ≤ leaves app untouched but transforms concat(A,B,C) into concat(B,C,A).

The predicate calls in the example above being recursive calls, we introduce the following example
to illustrate the case where a predicate makes calls to other predicates.

G. Yernaux & W. Vanhoof 51

Example 7. Let us extend Example 6 with the double append operation embodied by dapp/4:

dapp(L1,L2,L3,L4)← app11(L1,L2,L12),concat12(L4,L12,L3).

The analysis finds the following final interaction set for dapp:



















L1
{⇒cons(3),⇐cons(5),ψ⊥(4),ψa(11),⇒cons(8),⇐cons(10),ψ⊥(9),ψa(12)}

L4,

L2
{:=(2),ψ⊥(4),⇐cons(5),ψa(11),⇒cons(8),⇐cons(10),ψ⊥(9),ψa(12)}

L4,

L3
{:=(7),ψ⊥(9),⇐cons(10),ψa(12)}

L4



















where ψa = ψ({({⇒cons,⇐cons,ψ⊥},2)},{({:=,ψ⊥ ,⇐cons},2)}) and where the program points have

been made explicit when applicable.

The example shows that our analysis allows to entirely distinguish the four arguments of dapp/4,
whereas type- and mode information alone would not have made a distinction among the first three
arguments. Having these profiles for different arguments allows to order these by using an appropriate ≤
operator and, hence, to match dapp/4 with predicates that implement the same functionality differently.

A prototype implementation of the analysis, taking into account more elaborate examples, has been
implemented. It is available online as an open source project1. The tool is capable of reordering predicate
arguments and displaying the computed profiles for a directly recursive CLP program given as input.

We conclude this section with two important observations on the analysis described above. First, we
show that the algorithm terminates. Next, we give an upper bound of its computational complexity.

Proposition 2. The sequence (Φn) as defined by Algorithm 1 is convergent.

Proof. First note that by construction, the sequence of computed environments Φ0,Φ1, . . . is such that
∀i ∈ N0, either Φi = Φi−1 and then Φi is the fixpoint of the sequence, or there exists p ∈P such that
Φi(p) 6= Φi−1(p). In that case, the only possibilities are that

• Φi(p) ⊃Φi−1(p), due to a new interaction being discovered during the iteration, and/or

• ∃V
O1

V̂ ∈Φi(p),V
O2

V̂ ∈Φi−1(p) : O1 6= O2. This can only happen if a new operation is added
to an existing interaction, or if a ψ-based operation is replaced by a different ψ-based operation.

Now, for a predicate p/n, the number of interactions in Φi(p) (for any i) is limited by the number
of pairs of (possibly interacting) arguments, which is of the order O(n2). Likewise, the set of operations
labeling an interaction is necessarily finite, as its size is limited by the number of program points. What
remains to be shown is that for an operation (a predicate call, say to some predicate q/m) at a given
program point, there is no infinite succession of different ψ-based operations representing this operation.
Now, this could only happen if the called predicate q/m was itself re-analyzed between analysis rounds
of p. This is excluded, as we restricted programs to direct-recursive programs only, and our analysis
analyses predicates bottom-up in the call-graph such that when a predicate is analyzed that is calling
q/m, the analysis results for q/m are definitely known and hence the ψ-based operation representing this
call will always be the same (some abstract profile ψ(α1, . . . ,αm) or ψ⊥ in case the call is recursive).

Proposition 3. Let P be a program containing ℓP predicates, with a total of ℓa program points. Let

ℓio = max{(j + (l− 1))× l | p/n ∈ P, p/n has j input arguments and l output arguments}. Then the

running time of the analysis is of worst-case complexity O(ℓP× ℓio× ℓa× ℓR) with ℓR a finite natural

proportional to the number of potential operations to be registered in the predicates.

1The artifact code is available as a GitHub repository located at https://github.com/Gounzy/PredArgs .

https://github.com/Gounzy/PredArgs

52 A Dataflow Analysis for Comparing and Reordering Predicate Arguments

Proof. Let us consider the analysis of a given predicate pk/n(k ∈ 1..ℓP). The required lattice for the
abstract value associated to the predicate has ⊥, i.e. {}, as minimal set of interactions. The maximal

element, ⊤p, is the set containing an interaction Vi

Ok
Vo for each pair of variables Vi,Vo ∈ args(pk)

such that i 6= o and Vo is output. The elements in-between in the lattice are the sets of "incomplete"
interactions, i.e. where all variables and/or operations are not present.

The number of combination of arguments in potential interactions of pk is (j+(l− 1))× l, with j,
resp. l, the number of input, resp. output arguments of pk, since each input argument can have exactly one
interaction with each output argument, and each output argument can also contribute to the construction
of the (l−1) other output arguments. This quantity is majored by n−1×n.

We still need to prove that a finite number of (also finite) operations from lfp(R) suffices to populate
the potential interactions and thereby restrict the lattice’s height. First, observe that the number of oper-
ations in an interaction is majored by the number of program point in P which is finite. Now concerning
the ψ-based operations, only a finite amount of these is treated by the analysis as stated earlier. We will
denote by ℓR the number of operations that the analysis could possibly compute for a predicate given a
program’s call graph. For pk, this quantity is proportional to both the number of program points in its
body and, recursively, the number of potential operations of the predicates it makes calls to. These ψ-
based operations evolve as they are recomputed by successive analysis rounds; ℓR represents the number
of such steps that can occur before a computed ψ-operation converges.

So the height of the lattice, that is the maximal number of steps from ⊥ to ⊤p, is majored by ℓR×
(n− 1)× n (this corresponds to adding, at each step up the lattice, an operation to one of the existing
interactions, or creating an interaction decorated by one operation). As the analysis climbs up in the
lattice until reaching a fixpoint, this gives a realistic upper bound for the number of analysis iterations for
pk. The analysis might have to run up the lattice of each of the ℓP predicates in P, and at each iteration it
needs to crawl through ℓa program points and compute ℓP projections, hence the result.

5 Conclusions and Future Work

This work aims to develop a tractable process for profiling predicate arguments and normalizing their
order of apparition in a prototypical Mercury-like language. Our analysis essentially computes a high-
level abstraction of program derivations, called interactions. Although a normalization procedure already
existed for Mercury [8], it focused on normalizing clause bodies and did not address predicate arguments.

Our approach to code normalization revolves around the search of an ordering among predicate
arguments. Central to this technique is the research for an ideal ordering of the arguments, i.e. a total
order ≤ that allows to sort arguments in a non-ambiguous, unique way, at least in the context of a single
program. While we have introduced a first working, but rather arbitrary, example of such an order based
on argument profiles metrics, it is our belief that more precise or application-tailored orderings could be
found to enhance the analysis output in concrete situations. In particular, identifying the situations in
which an order is to be preferred over other incarnations, is left as future work.

Having a normal form for programs is recognized as an important step in several applications, one
of interest being a clone detection scheme, where recognizing a couple of similar predicates implies
finding a mapping of clauses and a mapping of arguments among the predicates such that two clauses,
or arguments, in the mapping play similar roles in the predicate’s definition. The problem, which is
intractable in general, becomes radically more manageable if a quadratic approximation is found for
one of the two interleaved matching problems [28]. We intend to explore the use of our analysis for
computing a matching of arguments in this context.

G. Yernaux & W. Vanhoof 53

Program comprehension is a rising research field in which all aspects of dataflow information consti-
tute useful pieces of information. Program slicing, for example, is a way of extracting the computations
in which a given (set of) argument(s) plays a prominent role [24]. Interestingly, what we achieve by
computing argument profiles resembles the extraction of such program slices. In existing program slic-
ing techniques however, the computed slices are actual parts of the considered program [24], whereas our
profiles rather constitute abstract representations of data flow information. Moreover, while an argument
profile typically exhibits the details of the operations (be it unifications or calls to predicates) that involve
the argument, the program portions obtained by means of slicing do not carry any interpretation of the
program, as the slices’ purpose is to represent the part of the program that might be of interest [20]. As
an example, consider a predicate in which all of the arguments are somehow participating in every single
atom but in different manners. The slices for the different arguments then systematically come down
to the whole predicate definition. In contrast, our argument profiles contain finer-grained distinctions,
allowing to identify which operations involve which arguments, as well as specific links between input
and output arguments – but abstracting from the order in which the involved atoms are executed. We
therefore believe our approach to be complementary to program slicing and to constitute a new step to-
wards better understanding links between arguments and, hence, deriving useful information about the
operations hidden in a predicate definition.

Other analyses addressing program comprehension or security concerns by studying interactions
among variables could benefit from our method, some examples being feature analysis, trace analysis
and taint analysis [9, 4].

References

[1] Magnus Ågren, Tamás Szeredi, Nicolas Beldiceanu & Mats Carlsson (2002): Tracing and Explaining Exe-

cution of CLP(FD) Programs. In Alexandre Tessier, editor: Proceedings of the 12th International Workshop
on Logic Programming Environments, pp. 1–16, doi:10.48550/arXiv.cs/0207047.

[2] Danilo Bruschi, Lorenzo Martignoni & Mattia Monga (2007): Code Normalization for Self-Mutating Mal-

ware. IEEE Security & Privacy 5(2), pp. 46–54, doi:10.1109/MSP.2007.31.

[3] Keith D. Cooper, Timothy J. Harvey & Ken Kennedy (2006): An Empirical Study of Iterative Data-Flow

Analysis. In: 2006 15th International Conference on Computing, pp. 266–276, doi:10.1109/CIC.2006.22.

[4] Bas Cornelissen, Andy Zaidman, Arie Deursen, Leon Moonen & Rainer Koschke (2009): A Systematic

Survey of Program Comprehension through Dynamic Analysis. Software Engineering, IEEE Transactions on
35, pp. 684 – 702, doi:10.1109/TSE.2009.28.

[5] Stefania Costantini & Alessandro Provetti (2005): Normal forms for Answer Sets Programming. Theory and
Practice of Logic Programming 5, doi:10.1017/S1471068404002339.

[6] Céline Dandois & Wim Vanhoof (2012): Semantic Code Clones in Logic Programs. In E. Albert, editor: Proc.
of the 22nd International Symposium on Logic-Based Program Synthesis and Transformation (LOPSTR’12),
LNCS 7844, Springer, pp. 35–50, doi:10.1007/978-3-642-38197-3_4.

[7] Saumya K. Debray (1992): Efficient Dataflow Analysis of Logic Programs. J. ACM 39(4), p. 949–984,
doi:10.1145/146585.146624.

[8] François Degrave & Wim Vanhoof (2008): Towards a Normal Form for Mercury Programs. In
Andy King, editor: Logic-Based Program Synthesis and Transformation, Springer, pp. 43–58,
doi:10.1007/978-3-540-78769-3_4.

[9] Thomas Eisenbarth, Rainer Koschke & Daniel Simon (2001): Aiding Program Comprehension by Static and

Dynamic Feature Analysis. doi:10.1109/ICSM.2001.972777.

https://doi.org/10.48550/arXiv.cs/0207047
https://doi.org/10.1109/MSP.2007.31
https://doi.org/10.1109/CIC.2006.22
https://doi.org/10.1109/TSE.2009.28
https://doi.org/10.1017/S1471068404002339
https://doi.org/10.1007/978-3-642-38197-3_4
https://doi.org/10.1145/146585.146624
https://doi.org/10.1007/978-3-540-78769-3_4
https://doi.org/10.1109/ICSM.2001.972777

54 A Dataflow Analysis for Comparing and Reordering Predicate Arguments

[10] Rebecca Faust, Katherine Isaacs, William Z. Bernstein, Michael Sharp & Carlos Scheidegger (2019):
Anteater: Interactive Visualization for Program Understanding. CoRR, doi:10.48550/arXiv.1907.02872.

[11] Melvin Fitting (2002): Fixpoint semantics for logic programming a survey. Theoretical Computer Science
278(1), pp. 25 – 51, doi:10.1016/S0304-3975(00)00330-3. Mathematical Foundations of Programming Se-
mantics 1996.

[12] Fergus Henderson, Thomas Conway, Zoltan Somogyi, Peter Schachte, Simon Taylor & Chris Speirs (1999):
The Mercury Language Reference Manual.

[13] Ulf Kargén & Nahid Shahmehri (2012): InputTracer: A Data-Flow Analysis Tool for Manual Program

Comprehension of x86 Binaries. In: 2012 IEEE 12th International Working Conference on Source Code
Analysis and Manipulation, pp. 138–143, doi:10.1109/SCAM.2012.16.

[14] Ludovic Langevine, Pierre Deransart, Mireille Ducassé & Erwan Jahier (2001): Prototyping CLP(FD) trac-

ers: a trace model and an experimental validation environment. In Anthony J. Kusalik, editor: Proceedings
of the Eleventh Workshop on Logic Programming Environments, doi:10.48550/arXiv.cs/0111043.

[15] Florian D. Loch, Martin Johns, Martin Hecker, Martin Mohr & Gregor Snelting (2020): Hybrid Taint Analysis

for Java EE. In: Proceedings of the 35th Annual ACM Symposium on Applied Computing, SAC ’20,
Association for Computing Machinery, New York, NY, USA, p. 1716–1725, doi:10.1145/3341105.3373887.

[16] Anne Mulkers, William Winsborough & Maurice Bruynooghe (1994): Live-Structure Dataflow Analysis for

Prolog. ACM Trans. Program. Lang. Syst. 16(2), p. 205–258, doi:10.1145/174662.174664.

[17] Kalyan Muthukumar, Francisco Bueno, Maria Jose García de la Banda & Manuel Hermenegildo (1999):
Automatic compile-time parallelization of logic programs for restricted, goal level, independent and paral-

lelism. The Journal of Logic Programming 38(2), pp. 165–218, doi:10.1016/S0743-1066(98)10022-5.

[18] Davide Pizzolotto & Katsuro Inoue (2020): Blanker: A Refactor-Oriented Cloned Source Code Normalizer.
In: 14th International Workshop on Software Clones, pp. 22–25, doi:10.1109/IWSC50091.2020.9047634.

[19] Dhavleesh Rattan, Rajesh Bhatia & Maninder Singh (2013): Software clone detection: A systematic review.
Information and Software Technology 55(7), pp. 1165–1199, doi:10.1016/j.infsof.2013.01.008.

[20] Gyöngyi Szilágyi, Tibor Gyimóthy & Jan Maluszynski (2002): Static and Dynamic Slicing of Constraint

Logic Programs. Automated Software Engineering 9, pp. 41–65, doi:10.1023/A:1013280119003.

[21] Jichang Tan & I-Peng Lin (1992): Compiling Dataflow Analysis of Logic Programs. SIGPLAN Not. 27(7),
p. 106–115, doi:10.1145/143103.143123.

[22] Wim Vanhoof (2000): Binding-Time Analysis by Constraint Solving. In Michel Parigot & Andrei Voronkov,
editors: Logic for Programming and Automated Reasoning, Springer, Berlin, Heidelberg, pp. 399–416,
doi:10.1007/3-540-44404-1_25.

[23] Wim Vanhoof & Gonzague Yernaux (2020): Generalization-Driven Semantic Clone Detection in CLP. In
Maurizio Gabbrielli, editor: Logic-Based Program Synthesis and Transformation, Springer International Pub-
lishing, Cham, pp. 228–242, doi:10.1007/978-3-030-45260-5_14.

[24] Martin Ward & Hussein Zedan (2007): Slicing as a program transformation. ACM Trans. Program. Lang.
Syst. 29, doi:10.1145/1216374.1216375.

[25] William Hale Winsborough & Charles N. Fischer (1988): Automatic, Transparent Parallelization of Logic

Programs at Compile Time. Ph.D. thesis, The University of Wisconsin - Madison.

[26] Mengmei Ye, Jonathan Sherman, Witawas Srisa-an & Sheng Wei (2018): TZSlicer: Security-aware dynamic

program slicing for hardware isolation. In: 2018 IEEE International Symposium on Hardware Oriented
Security and Trust (HOST), pp. 17–24, doi:10.1109/HST.2018.8383886.

[27] Gonzague Yernaux & Wim Vanhoof (2019): Anti-unification in Constraint Logic Programming. Theory and
Practice of Logic Programming 19(5-6), p. 773–789, doi:10.1017/S1471068419000188.

[28] Gonzague Yernaux & Wim Vanhoof (2022): On Detecting Semantic Clones in Constraint Logic

Programs. In: 2022 IEEE 16th International Workshop on Software Clones (IWSC), pp. 32–38,
doi:10.1109/IWSC55060.2022.00014.

https://doi.org/10.48550/arXiv.1907.02872
https://doi.org/10.1016/S0304-3975(00)00330-3
https://doi.org/10.1109/SCAM.2012.16
https://doi.org/10.48550/arXiv.cs/0111043
https://doi.org/10.1145/3341105.3373887
https://doi.org/10.1145/174662.174664
https://doi.org/10.1016/S0743-1066(98)10022-5
https://doi.org/10.1109/IWSC50091.2020.9047634
https://doi.org/10.1016/j.infsof.2013.01.008
https://doi.org/10.1023/A:1013280119003
https://doi.org/10.1145/143103.143123
https://doi.org/10.1007/3-540-44404-1_25
https://doi.org/10.1007/978-3-030-45260-5_14
https://doi.org/10.1145/1216374.1216375
https://doi.org/10.1109/HST.2018.8383886
https://doi.org/10.1017/S1471068419000188
https://doi.org/10.1109/IWSC55060.2022.00014

	1 Introduction
	2 Basic Concepts and Notations
	3 Argument and Predicate Profiles
	4 A Dataflow Analysis Computing Argument Profiles
	5 Conclusions and Future Work

