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Abstract—Deciding whether two code fragments are semantic
clones, or type-4 clones, is a problem with many ramifications.
Current research often focuses on the problem in an imperative
or object-oriented setting and most existing work uses abstract
syntax trees, program dependency graphs, program metrics or
text-based, token-based and machine learning-based approaches
to identify semantic clones. In this work, we adopt a funda-
mentally different point of view and express clone detection as
a search problem in a logic programming setting. Due to their
restricted syntax and semantics, (constraint) logic programs are
by nature simple and elegant candidates for automated analysis.
After having formalized the clone detection problem at the level
of predicates, we develop a study of the different parameters
that come into play in the resulting framework. We try and
identify the complexity issues involved in a general semantic
clone detection procedure that essentially computes so-called
most specific generalizations for predicates written in constraint
logic programming (CLP). Even though well-known for basic
structures such as literals and terms, generalization (or anti-
unification) of more complex structures such as clauses and
predicates has received very little attention. We show that the
anti-unification allows both to control the search and guide
the detection of cloned predicates. We pinpoint where efficient
approximations are needed in order to be able to identify
semantic code clones in a manageable time frame.

Index Terms—Semantic Clone Detection, Constraint Logic
Programming, Complexity, Anti-unification

I. INTRODUCTION

Clone detection refers to the process of deciding whether
two source code fragments exhibit a sufficiently similar com-
putational behavior, independent of them being textually equal
or not. There is no unified definition of what similarity
measure should be used to determine if two code portions are
clones but in the literature one often distinguishes between
four different classes, or types, of clones. The simplest clone
classes, called type-1, type-2 and type-3 clones, are solely
syntactic. Type-4 clones on the other hand refer to fragments
that are semantically equivalent, even if the respective source
code fragments are quite different and seemingly unrelated [1].
This type of clones, also known as semantic clones, is the most
difficult type to find by automatic analysis [2].

Semantic clone detection is a powerful tool given its direct
applications in program comprehension [3], plagiarism detec-
tion [4] and malware detection [5]. The resulting knowledge
can be used to drive advanced program transformations such as
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removal of redundant functionality from source code [1] and
the automatic detection of a suitable parallelization strategy
for a given code fragment [6].

A semantic clone detection framework assumes given two
essential tools: first, a definition stating the exact nature of
the clones to be found; second, a workable procedure to
decide whether two fragments are semantic clones according
to the definition. See [7] for a recent comprehensive survey
of the existing approaches at semantic clone detection. In this
work we use constraint logic programming (CLP) that has
been recognized before as a suitable abstraction to represent
algorithmic logic or knowledge [8], given its simple yet
powerful expressiveness. Reasoning on algorithmic cores in
CLP rather than on programs should allow to lift the clone
detection approach to an algorithmic recognition scheme able
to perform in even more interesting tasks such as automatically
replacing code portions by more efficient implementations,
potentially written in other languages or paradigms [6]. CLP
has proven to be an excellent subject for static analysis. This
is a consequence of its remarkably simple syntax: programs
are essentially listings of constrained Horn clauses, so that
crawling through a program is straightforward, and many static
analyses exist [8].

Our definition of semantic clones is based on existing
work that considers two CLP code fragments to be cloned if
there exists sequences of syntactic program transformations
that allow to bring both fragments into a third, common
form [2]. Although the underlying search procedure has been
defined before [9], it still lacked an in-depth study of the
different ingredients and parameters necessary to implement
it in practice. We intend to fill this gap in the present work.

In the paper the code fragments are predicates, each com-
posed of a set of constraint Horn clauses — each clause’s body
being in turn composed of a set of literals. These definitions
are what makes CLP an extremely declarative paradigm by
nature and, hence, an excellent candidate for theoretical anal-
yses. What’s more, our definition of semantic clones is very
liberal, allowing for a truly fundamental study of semantic
clone detection formulated as a challenging, but remarkably
elegant, search problem — some problematic aspects of which
still need to be investigated. Indeed, though elegant and purely
declarative, the fact that we allow sets rather than sequences



typically comes at a cost in regard of computability aspects.
Clone detection is no exception to the rule, being in its general
formulation an undecidable problem and as will appear clear
in the paper, more than one of its aspects are highly difficult
to compute in an exact way — making the use of heuristics
and approximations necessary at several steps of the process.

This work thus aims to regroup, generalize and extend the
existing theoretical foundations motivating the introduction of
approximations to achieve (part of) a clone detection proce-
dure for predicates represented in CLP. Only few attempts
have been made at formalizing clone detection in a logic
programming setting [2], [7]. As a consequence, some aspects,
such as the definition of a similarity measure (or function)
among predicates, have not yet been investigated. As we
will show, this part of the problem boils down to computing
some kind of most specific generalization for the two input
predicates, i.e. a third predicate that is more general than
the two firsts while being as specific as possible — a process
called anti-unification. For the first time, we will develop the
different computational complexity issues that arise in this
relatively new problem. We say “relatively” given that we have
independently addressed pieces of the problem in the past,
namely by devising approximations for the anti-unification of
goals [10], [11] and proposing a simple yet powerful procedure
to choose which program transformation(s) should be applied
at each step of the detection process [9].

The exact definition of semantic clones being subject to
debate [12], we will in this work abstract away from existing
approaches and keep the decision of whether the predicates are
semantic clones parametric with 1) the program transforma-
tions that are allowed in the process, 2) the similarity function,
3) the quasi-order defining a notion of generality/specificity
among program constructions, 4) the anti-unification algorithm
used to generalize goals, 5) a function measuring the so-
called quality of a generalization and 6) a threshold value to
determine the minimal amount of similarity that is acceptable
for predicates to be considered clones. To the best of our
knowledge no procedure made to deal with most specific
generalizations of predicates in this sense, nor allowing for this
range of parameters, has yet been proposed, although simpler
techniques do exist for tree-structured syntactic structures such
as literals and terms [13], [14].

Our framework’s sensibility to the six essential parameters
cited above are one key difference between our work and re-
lated work that also uses anti-unification to detect clones [15],
[16], with a fixed similarity score function and a predetermined
anti-unification algorithm. The latter approaches are based
on abstract syntax trees of imperative programs and search
for similar sequences of instructions. As a consequence, the
clones found are inevitably syntactic, as opposed to the cloned
predicates that we aim to detect, which describe semantic
relations among arguments.

The paper is structured as follows. Section II introduces
basic CLP notations and concepts that will be used through-
out the paper. In Section III we outline a general semantic
clone detection procedure and discuss its various parameters,

among which a similarity function used to steer the detection
process. We introduce the idea of generalization as a way of
capturing this notion of similarity among predicates. Then, in
Section IV we give a first formalization — and the associated
algorithm — for computing the best possible generalization
of two predicates. We show that in this setting, more than
one complexity issues arise. We introduce leads to reduce this
complexity overhead before concluding this work in Section V.

II. PRELIMINARIES

A CLP program is traditionally defined [17] over a context,
which is a 5-tuple (D, V, F, L, Q), where D is a non-empty
set of constant values, V is a set of variable names, F a set of
function names, £ is a set of constraint predicates over D and
Q a set of predicate symbols. The five sets are all supposed
to be disjoint. Symbols from F, £, and Q have an associated
arity and we write f/n to represent a symbol f having arity n.
Given a CLP context C = (D, V, F, L, Q), we can define the
set of terms over C as Tc = DUVU{f(t1,ta,....,tn)|f/n € F
where Vi € l.n : t; € Tc¢}. Likewise, the set of con-
straints over C is defined as C¢ = {L(t1,t2,...,tn) | L/n €
LandVi € 1.n : t; € 7Tc} and the set of atoms as
Ac ={p(V1,..., Vo) |p/n€ Qand Vi € 1.n: V; € V}.

Example 1. Let us consider a numerical context where D = 7.
and F is the set of usual functions over integers composed of
addition (+/2), substraction (—/2), integer division (+/2),
multiplication (x/2) and modulo (%/2). Supposing X and
Y to represent variables, then the following are terms:
3, X, +(3,X), +(4,*(X,%(Y,2))). Given predicates p/1,
q/1, v/2 and c/2, the following are atoms: p(3), q(X),
r(+(2,4),+(3,X)). Given constraint predicates > /2 and
</2, the following are constraints: >(X,+(3,Y)), <(8, 2).

By convention, variable names start with an uppercase letter
while the elements from £, F and O start either with a
lowercase letter or with a symbol. We will use the notion
of a literal to refer to either a constraint or an atom. A goal
G C (Cec U Ag) is a set of literals.

Example 2. Let >/2 be a constraint predicate from L and p/3
be a predicate symbol from Q. The following set is a valid goal
comprised of three literals: {>(X,5),>(8,2),p(X,Y, Z)}.

A program is then defined as a set of predicates, each
predicate p/n consisting of a set of constraint Horn clause
definitions where each clause definition is of the form
p(Vi,..., Vi) + G where p(Vi,...,V,) is an atom called
the head of the clause with Vi,...,V,, all distinct variables,
and G a goal called the body of the clause. From now on, we
will write constraints and terms in infix style when possible,
e.g. writing X > 3+ [(Y) in place of >(X,+(3,1(Y)).

Example 3. Consider the same numerical constraint domain
as in Example 1. The predicate mazx /3 defined by the clauses
max(X,Y,Z) + {X > Y, X = Z} and mazx(X,Y,Z) +
{Y > X,Y = Z} is such that an atom max(Vy,Va, V3)
succeeds if Vs unifies with the maximum value among V1, Vs.



For a predicate symbol p/n, we use def(p/n) to denote
the definition of p/n in the program at hand, i.e. the set of
clauses having a head atom using p/n as predicate symbol.
Without loss of generality, we suppose that all clauses defining
a predicate have the same head (i.e. use the same variable
names to represent the arguments) as is the case in Example 3.
To ensure this, we assume that the set of constraint predicates
L contains at least an equality relation represented by =/2.

In what follows we will consider the context to be implicit
and talk simply about two CLP programs and the predicates
and clauses defined therein. Terms, literals, goals, clauses and
predicates will sometimes be referred to as program objects.
A substitution is a mapping from variables to terms. Given a
program object e, applying some substitution o on e yields a
variant of e denoted ec where all occurrences of each variable
V € dom(o) has been replaced by o (V).

As for semantics we consider the purely declarative CLP
paradigm exposed in [17]. Operationally, CLP uses constraints
to represent all the manipulations of program structure (includ-
ing data). Different instantiations of the CLP(D) framework
are implemented in SWI-Prolog — and in particular, the possi-
bility to use finite domains (CLP(FD)). These libraries are the
target formalization for representing, testing and developing
clone detection tools derived from our framework!.

III. A SEMANTIC CLONE DETECTION PROCESS IN CLP

Consider the following predicate definitions.

p(X,Y,Z, M) <« {X>Y,KX,Z M)}
p(X,Y,Z, M) « {Y>XHY,Z M)}

t(A, B, M) « {A>B,M=A}

t(A, B, M) « {B>AM=B}

(U V.W.D,E) « {U2V,U>W,E=Ur(V.W,D)}
q(U,V,W,D,E) « {U>V,W>UE=W,rU,V,D)}
q(U,V,W,D,E) « {V>UV>W,E=V,r(UW,D)}
q(U,V,W,D,E) + {V>UW>V,E=W,rU,V,D)}
r(A, B, M) « {A>B,M =B}

r(A, B, M) « {B>AM=A}

The predicates p/4 and ¢/4 share the functionality of comput-
ing the maximum of their three first arguments in their fourth,

resp. fifth argument. But p/4 computes the maximum through
a call to an auxiliary predicate ¢/3, while ¢/5 exhaustively
lists the orderings that could occur among its first three
arguments to determine which one contains the maximum
value. Moreover, ¢/5 computes in its fourth argument the
minimal value among its three first arguments, a question
which p/4 does not address. The example shows that it can
happen that some computations or side-effects are particular to
one implementation and do not appear in the other. These kind
of side-computations can be left aside if one is interested to
find at least partial clones, i.e. predicates for which part of the
computations are similar. But in some applications, it might
be more adequate to search for predicates that completely
mimic one another rather than partial clones. Similarly, if
one considers that calls to auxiliary predicates constitute a
radically different algorithmic approach than the one where
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the computations appear in the predicate’s constraints, then
the predicates in the example should not be labeled as clones
by the search procedure, even if both compute some relation
to the maximal value among three variables.

This has led part of the existing literature to adopt a defini-
tion for semantic clones that is parametric to some allowed
set of program transformations, i.e. functions that perform
some (partial) semantics-preserving modifications on source
code. For instance, [18] considers code portions to be semantic
clones when their data-flow models can be transformed into a
common normal form. In our context, we build on the similar
idea that constrained Horn clause code fragments are clones if
both fragments can be transformed into a third, common code
portion by only using allowed program transformations [2].

Definition 1. Let R denote a set of allowed program transfor-
mations and p/n € Q. We denote by p/n ~~% p' /n’ the fact
that there exists a series of program transformations from R
that can be applied on successive versions of p/n to obtain
p'/n’. We say that two predicates p/n and q/m are R-clones
if and only if p/n ~T r/l and q/m ~% r/I.

Note that the definition is parametric with the set of al-
lowed transformations R. The choice of these transformations
depends on the context and allows to define classes of clones,
i.e. clones with respect to the use of these particular transfor-
mations. For example in [19], the considered transformations
are unfolding (replacing an atom by the body of the clause(s)
which head(s) it unifies with) and slicing (removing part of
the predicate definition, be it arguments, literals or clauses).
In the example above, the use of adequate unfolding and
slicing transformations allows to bring the two predicates into
a common form, namely [9]:

maz(X,Y,Z,M) « {X>Y,X>Z M=X}
max(X,Y,Z,M) + {X>Y,Z>X,M=2}
max(X,Y,Z,M) + {Y>X,Y>Z M=Y}
max(X,Y,Z,M) + {Y>X,Z>Y,M=2}
exhibiting the cloned functionality from both fragments. Thus
if R includes the usual unfolding and slicing transformations
(as well as a transformation allowing to rename the predicates
into a common name max), then p/4 and ¢/5 are R-clones.
Naturally, the choice of the allowed transformations is crucial
and the transformations sometimes need to be constrained in
order to detect clones that make sense. For instance, slicing
the entirety of both predicates leads to trivial, empty clones.

While desirable, it is not always possible to arrive at exactly
the same predicate by applying the transformations from R.
To allow for some small variations (such as slightly different
constraints or a different number of arguments), we introduce
a quantitative similarity measure allowing predicates to be
considered cloned fo some extent. Then, given such a similarity
function, we define a more fine-grained category of clones.

Definition 2. A similarity function sim : P +— P — RT
associates a positive real value, called a similarity value, to
a couple of predicates. Predicates that are considered fully
similar get a similarity value of 0; the higher the similarity
value, the more the predicates are considered dissimilar.
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Algorithm 1 General semantic clone detection process in CLP

I: p1 < def (p/n), @ < def(q/m)
2: 851 00,0+ 1

3: repeat

4 s  sim(pi, ;)
5

6

7

if s; < 7 then
return true
choose at least one transformation in R to apply on p;
and/or ¢; that yield a similarity value lower than s;, if
such a transformation exists
8:  pit1 ¢ p; transformed, ¢; 41 < ¢; transformed
9. 1+ 1+1
10: until s; —s;,_1 >0
11: return false

Definition 3. Let sim be a similarity function, p/n and q/n
predicates, T > 0 a real value called the threshold and R
a set of allowed program transformations. p/n and q/m are
R-1-sim-clones if and only if there exists some predicates
r/l and s/k such that p/n ~% r/l and q/m ~T s/k and
sim(r/l,s/k) <.

Our search procedure based on that of [9] and on Def-
inition 3 is summarized in Algorithm 1. Note that the al-
gorithm is parametric with the similarity function and some
threshold value 7 > 0. We consider to be R-7-sim-clones
(or simply clones) those pairs of predicates for which there
exist transformed versions obtained after a finite number
of transformation rounds, that yield a similarity value (as
computed by s¢m) that scores lower than 7.

The algorithm halts whenever the similarity value of two
predicates scores lower than the threshold value, or when
the transformations, rather than bring the predicate definitions
closer to one another (as measured by sim), lead to a higher
similarity value. Note that the algorithm is somewhat ideal-
ized: we consider granted a deterministic way of choosing
the transformation(s) to apply next on the predicates. Without
this hypothesis, the algorithm should rather explore the po-
tentially enormous search space of all possible transformation
applications. We also consider granted a similarity function.
There are thus two important questions that Algorithm 1 leaves
unanswered: 1) how do we choose the right transformation
to apply on the predicates, and 2) how do we compute the
similarity value for two predicate definitions.

Let us first focus on question 2). An important existing
tool to compute (dis)similarity among program objects is
generalization. Generalization is concerned with the balance
between variables (representing generality) and non-variable
terms (incorporating specificity) appearing in a program ob-
ject [13]. The notion is based on the following relation.

Definition 4. Given = a partial order between program
objects, let G and G' be two program objects of the same
nature. G is a generalization of G’ if and only if 30, a
substitution such that Go < G'. We denote this by G C G'.

The partial order =< is typically incarnated for goals by the
set or sequence inclusion, depending on the applications. For
two predicates p/n and g/m, such a partial order is such that
p/n = gq/m iff p/n can be obtained by eliminating certain
syntactic elements from ¢/m (be it clauses, arguments or
literals) and p/n represents a grammatically correct predicate.

Now for two program objects of the same nature GG; and
G, we say that a third object G of that nature and such that
G C G4 and G C G4 is a common generalization of G and
G3. Such a common generalizations thus contain (part of) the
shared structure among G; and G, and introduces variables
to denote parts that need to be generalized.

Example 4. Let us consider =< to be the usual set inclusion C.
Given the goals Gy ={Y >6,X =3+Y}and Gy = {A =
3+ f(B),A > 8,C = 5}. Common generalizations include
0, (Vi = 3+ Vol {Vi = Va},{Vi > Vi} and G = {V}; >
Vo, Vs = 34 V4}, with Vi o 3.4 denoting fresh variable names.
It is indeed easy to see that applying o1 = [V1 — Y, V5 —
6,Vs — X,V — Y] on the latter common generalization G
yields Go1 = {Y > 6,X = 3+ Y}, a subset of Gy, and
applying oo = [V1 — A, Vo = 8, V3 — AV, — f(B)] yields
Goy ={A =3+ f(B),A > 8}, a subset of Gs.

A common generalization thus embodies (part of) the com-
mon computations of both the considered program objects.
An example of similarity function based on such a common
generalization is the function that counts the dissimilarities in
the generalizing substitutions, e.g. considering that each link
V +— t where t ¢ V counts as one (dis)similarity unit.

Example S. Using the similarity measure described above, the
common generalization G from Example 4 gets a similarity
value of 3 since there are in 01 and o3 one, respectively two,
mappings from a generalization variable V;(1 < i < 4) to a
non-variable term (namely 6,8 and f(B)).

Although this similarity function is useful to quantify an
amount of (dis)similarity among goals, there is an advantage
at keeping the similarity function a parameter of the clone
detection framework. Indeed, the underlying generalization
operator can itself take various forms. Sometimes, for ex-
ample, it makes more sense to constraint the generalizing
substitutions to be injective mappings, or even mappings from
variables to variables only, rather than arbitrary mappings
from variables to terms [11]. Also note that in the examples
above, we considered common generalizations of goals, which
is a well-understood technique, but recall that our aim is to
assess the similarity of whole predicates. Computing common
generalizations of predicates is a missing piece in semantic
clone detection and is the focus of the next section.

But before diving into it, let us get back to question 1).
Interestingly enough, the question is partially answered in pre-
vious work [9] by the exact same idea as the one we exposed
to answer question 2), namely the computation of common
generalizations. Indeed, it is showed that having an algorithm
for computing common generalizations of predicates allows
to grasp the structural, or syntactical, differences among the



predicates, hence allowing to determine if an allowed trans-
formation (slicing and/or unfolding) would bring to predicate
definitions that diminish these structural differences. However,
in the work in question, the notion of common generalization
of two predicates has remained purely theoretical.

IV. TOWARDS PREDICATIVE ANTI-UNIFICATION

As Example 4 hints, given two program objects, some com-
mon generalizations are more useful to compute similarities
than others. In the example, the empty generalization (), or
a generalization harboring only one literal, is typically less
informative than the common generalization G that captures
as much common structure as possible for G; and G5 while
introducing as few variables as possible. Such generalizations
are called most specific generalizations, which definition de-
pends on the notion of quality.

Definition 5. A quality function v associates a real value v(Q)
to any considered program object G.

Using a quality function v as an indicator of a program
object’s fitness as a generalization, we get to define maximal
elements in a quality perspective: a common generalization G
of two program objects G; and G is called a v-most specific
generalization (v-msg) iff no common generalization of G
and G5 has a strictly higher quality than G. A typical quality
function may valorize the number of (distinct or not) terms
that appear in a generalization, the size of the generalization in
number of literals, or any other optimization criterion making
sense for the context of application. The process of computing
v-msgs is called anti-unification [13], [14], [20].

Example 6. Consider the quality function v returning for a
goal G its cardinality, i.e. v(G) = |G|. Then, given the goals
from Example 4, both common generalizations G = {V, >
Vo,V3 = 3+ V4} and {Vi > Vo, V3 = V4}, and any other

common generalization harboring two literals, are v-msgs.

Example 6 indicates that quality and similarity functions
should be chosen harmoniously and considering the applica-
tion. In the example, v valorises the number of generalized
literals; an associated similarity function should thus consider
goals to be similar if enough literals are captured in the v-
msg. In what follows we will consider v to be defined in a
particular context and will simply talk about msgs. Let us now
consider two predicates p/n and ¢/m defined as:

p(Vi,... . Va) « {Ai,..‘,Aél]w
def (p/n) = ?(Vl,...,Vn) — {41, AL
})(Vl,...,vn) — {4, AL}
qWi,...,Wy) + {Bl,....BL},
def (q/m) = qWh,....Wn) <« {B},....B.},
d(Wi,oo W) e {BY,...,B!"}

For the sake of clarity we will refer to the -th clause of the
predicates in this representation using the notations p; and

Algorithm 2 Overview of a naive predicative anti-unification

1: Umaz < 0

2: for all f4 C1.nx 1..m do

3 for all fo C1..t x 1..u do

4 vo <0

5: for all (i,j) € fc do

6: ve « vo + v(Ayg, (body(pi), body(q;)))
7 if vc > Ve then

8 Vmaz < VC

9: return v,

gi- The notation body(p;) will represent the set of literals
composing the body of the clause p;. We will further denote by
A(G1, G2) the application of an algorithm computing a msg of
two goals G; and Gi. Supposing the variables appearing in Gy
and G to be respectively Vi,..., Vi and Wy, ... W, given
an injective mapping f C 1..kx1..[, we define A;(G1,G2) as
equal to A(Fy, Fy) where F (resp Fb) is a version of G (resp
G'2) such that V(i, j) € f the occurrences of V; (resp. ;) are
replaced by the term ¢; ;, with ¢; ;/0 € F a fresh symbol not
appearing in GG; nor in G2. This forces the anti-unification to
consider pairs of variables to be linked together.

Now recall that an msg of p/n and ¢/m should be a
predicate that exhibits as much common structure between
p/n and q/m. Intuitively, this predicate should have arguments
that correspond to (a subset of) the arguments of p/n and
g/m, and clauses that correspond to the generalizations of
pairs of clauses from p/n and g/m. In other words, we need
to find an injective mapping f4 C (l.n x 1l..m) (i.e. an
association of arguments) as well as an injective mapping
fe € (1.t x 1..u) (i.e. an association of clauses), such that

> v (An (Al 4B, Bl
icimg(fc) ’ fa®
is maximal. This process we will refer to as predicative
anti-unification, as it is a natural extension of classical
anti-unification of goals or terms to predicates.

An exhaustive predicative anti-unification process will thus
typically scan the entire field of possible matchings between
the arguments of p/n and those of ¢/m and for each of these
argument matchings f4 C 1.n x 1l..m, loop over all the
possible clause pairings fo C 1..t x 1..u. Computing the best
quality achievable by anti-unifying the corresponding clause
bodies with respect to the current argument matching (i.e.
computing v (Ay, (body(p;), body(q;))) for each (i,j) € fc
and summing up the results) gives the total quality resulting
of pairing the clauses according to fo within the argument
configuration prescribed by f4. Algorithm 2 incorporates these
computations and returns the quality of the predicative msg.

Obviously in the worst case scenario the number of iter-
ations required by such a naive algorithm awfully explodes,
since the number of matchings to explore (be it the matching of
arguments or clauses) grows exponentially with respect to the
number of arguments and/or clauses. Moreover, the algorithm
A itself may need to consider different literal pairings in
order to find a suitable generalization. In the following we



discuss several approaches that should lead to reduce the
computational overhead and pave the way towards computing
tractable approximations for the concept of predicative msg.

A. Anti-unifying Goals

The operation of computing an msg of two goals G; and G4
(denoted above A(G1,G>)) is in itself a non-trivial optimiza-
tion problem with the declarative semantics of Horn clauses
that we adopt in this work. Indeed, computing A(G1,G2)
implies finding a mapping of the literals of G; and Gi
such that anti-unifying each couple of literals (A;, As) in the
mapping, i.e. choosing to have A(A;, As) in the common
generalization — with its associated quality v(A(A4;, As)) —
leads to a high enough overall quality at the goal level. In
related work [11] we have proved that the complexity of these
operations is heavily dependent on the slightest variations of
the quality function v: for instance, if v only valorizes the
number of terms of the output goal, then computing a msg
can be done in polynomial time; in contrast, for a v that
gives higher value to those goals that harbor as few different
variables as possible, the anti-unification problem becomes
NP-complete. In the latter case, previous work [10] proposed
a polynomial A*-like abstraction for which experimentation
shows that the average output generalizations approximate the
size of a msg by more than 95% while drastically reducing
the execution time compared to naive brute-force algorithms.

B. Normalizing Constraints

In order to generalize two atoms or two constraints during
an anti-unification process, it is typically required that they
be compatible with one another, i.e. for atoms to be a call
to one and the same predicate r/a € Q — which is trivial
to verify — and for constraints to be equivalent expressions
as evaluated in D — which is not always as easy to verify
since constraints from most domains can be written in many
different formulations, in regards to both predicates from
L and functors from F. For example, in a numerical CLP
context, the constraints Y >3+ 5,8 <Y and 2x4 <Y are
equivalent. In fact, the possibilities are often near to infinite
due to the expressiveness of CLP languages. To allow an
anti-unification routine to still identify those constraints that
should be considered as expressing similar computations, one
should dispose of some mean to normalize the constraints.
Normalization is the process of bringing expressions in a
normal (or canonical) form in order to keep the representation
univocal. A side-benefit of normalization is the detection
and removal of useless constraints having no impact on the
program’s logic. Some constraint normalizations techniques
do exist [21], [22], but these are all domain-dependent and no
general-purpose algorithm has yet been proposed to normalize
expressions of any CLP domain in a straightforward way. It
is not clear yet whether an efficient implementation of such
an algorithm even exists, the only known universal method to
compare constraints requiring the use of an exhaustive solver,
which of course (if such a solver even exists for the domain at
hand) can cause the detection of equivalent constraints to take

a significant amount of time. The use of more limited CLP
languages only able to formulate constraints in one manner,
yet expressive enough, is an alternative that has, to the best of
our knowledge, not yet been investigated.

C. Matching Clauses and Arguments

Let us consider the two following clauses. The argument
mapping {(1,1),(2,3)}, {(1,2),(2,1),(3,3)}, associating V;
with W and V5 with W3, feels like the most promising choice.

p(V1, V2, V3) « {(Vi=3%V, V3 <4}
q(W1, Wa, W3) « {Wy =5W; =3+ Ws}

As the example suggests, some variables may represent radi-
cally different computations, so that it is necessary to consider
all the “incomplete” mappings, i.e. involving only a subset of
the arguments. Therefore there are |P(1..n x 1..m)| = 2/»*™!
mapping possibilities to test in order to find the argument map-
ping such that the resulting generalization is of highest quality
for the clauses at hand. The best mapping for two clauses,
however, is not guaranteed to give the most appropriate pairing
of arguments for the whole predicates — and the considered
clauses might give rise to a better msg if paired with other
clauses (or with no clause at all). For a given argument
mapping, this time all the possible |P((1..t x 1..u)| = 2/*xul
clause combinations might lead, after anti-unification, to the
maximal v in the resulting general predicate.

Promising leads to reduce the complexity of these nested
exponential procedures include the consideration of the argu-
ments modes if these are identified (e.g. only trying to map
input arguments with their input counterparts and likewise for
output arguments) as well as types, considering e.g. that an
argument known to represent some functor-based structure
(such as a list) is only compatible with similar arguments.
These techniques build on prior static or dynamic analysis
methods, and have been subject to a significant amount of
research already [23]. However, mode and type information is
often not enough to fully distinguish a predicate’s arguments.
A more precise approach consists in annotating the arguments
with a so-called profile describing the elementary operations
in which it is involved, and the construction of which output
argument(s) it participates to, allowing in the end to define a
unique ordering in a predicate’s arguments. Such an analysis
is work in progress and should facilitate the search for f4.

V. CONCLUSIONS AND FUTURE WORK

In this work we have first formalized the problem of seman-
tic clone detection in CLP and given a transformation-based
algorithm parametrized by a so-called similarity function.
We have underlined its connections with the classical anti-
unification problem stated on the level of whole predicates,
a scenario that has been given little to none attention in the
past. Some research, however, dealt with the anti-unification
of clauses. With #-subsumption as exposed in [13], the anti-
unification of two clauses C7 and C} is defined as an operation
outputting the conjunction of all the possible anti-unification
results among literals appearing pairwise in the clauses, i.e.
{A(h,lg) 1l € bOdy(Cl) ANl € bOdy(Cg)} Although this



definition makes sense at the semantic level, the number of
literals in the generalization can get as high as |body(C1)| x
|body(C3)|. Some literals are thus anti-unified with more than
one other literal, leading to potential over-generality in the
result. Others approaches towards anti-unifying clauses exist
(e.g. [24], [25]) but only in the context of Inductive Logic
Programming where anti-unification is realized in the presence
of what is called background knowledge.

We then outlined the different ingredients required for such
an optimization procedure to be effective, and have shown
that these ingredients each lead either to a computational
complexity explosion or to a lack in the research carried out
thus far. Being a first attempt at formalizing the anti-unification
of predicates defined as sets of clauses, this work can be seen
as a generalization of our previous research that had been
attached to computing most specific generalizations of sets of
literals [10]. There is proof that the anti-unification problem
stated for unordered goals becomes NP-complete as soon as
the injectivity of the substitutions is required or even needs
to be maximized. Unsurprisingly anti-unifying predicates also
has its own lot of complexity issues once there is a need to
injectively map clauses from the two predicates to compare,
and arguments appearing therein.

Having observed this complexity is only the first step
towards devising approximate but fast ad hoc approximation
algorithms for each of these problems. Tractable solutions
based on A*-like heuristics can exist to drastically reduce the
amount of time dedicated to computing msgs while keeping
the accuracy of the results pleasantly high. Making the best
use of inferred knowledge about the considered programs
specifics (e.g. thanks to prior static and dynamic code analysis
techniques) is in our opinion another important direction to
explore in order to reduce the explosive (be it exponential or
combinatory) complexity of automatic clone detection. This is
a topic for further research, as proper abstractions are a must-
have in situations where a lot of quick comparisons amongst
predicates need to be carried out efficiently.

We have chosen to remain at a conceptual level so as to
understand and fully delimit the clone detection problem in
constrained Horn clauses. Once equipped with appropriate
heuristics and approximations, our framework (declined by
various parameters instantiations) will be empirically tested
on real-world examples of (absence of) cloning. One option
is to translate a testbed of object-oriented programs into CLP
programs in a similar manner as in [19], and then compare
the results to concurrent clone detectors’ performances.

There exists a line of work relying on anti-unification
of abstract syntax trees to detect code clones in functional
languages such as Erlang or Haskell [26]. The anti-unification
algorithm is essentially used to compute lambda-functions that
can be substituted in several parts of a program. The authors,
however, focus on the operational aspects and do not provide
formal definitions for what they consider as being clones. An
interesting lead for future research would be to compare (an
instance of) our method with theirs, since both approaches are
based on the pureness and elegance of declarative paradigms.
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