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Abstract. In this work we provide an algorithm capable of searching
for semantic clones in CLP program code. Two code fragments are con-
sidered semantically cloned (at least to some extent) when they can both
be transformed into a single code fragment thus representing the func-
tionality that is shared between the fragments. While the framework of
what constitutes such semantic clones has been established before, it is
parametrized by a set of admissible program transformations and no al-
gorithm exists that effectively performs the search with a concrete set of
allowed transformations. In this work we use the well-known unfolding
and slicing transformations to establish such an algorithm, and we show
how the generalization of CLP goals can be a driving factor both for
controlling the search process (i.e. keeping it finite) as for guiding the
search (i.e. choosing what transformation(s) to apply at what moment).

1 Introduction and Motivation

Clone detection refers to the process of finding source code fragments that ex-
hibit a sufficiently similar computational behavior, independent of them being
textually equal or not. Such fragments are often called clones. While there is
no standard definition of what constitutes a clone [16], in the literature one of-
ten distinguishes between four different classes, or types, of clones. The simplest
class, sometimes called type-1 clones, refers to code fragments that differ only in
layout and whitespace, whereas type-2 and type-3 clones allow for more (syntac-
tical) variation such as renamed identifiers and statements and/or expressions
that are different or lacking in one of the fragments. Type-4 clones on the other
hand refer to fragments that are semantically equivalent, even if the respective
source code fragments are quite different and seemingly unrelated [16]. This type
of clones, also known as semantic clones, is arguably the most interesting albeit
the most difficult type to find by automatic analysis.

While detecting semantic clones is an undecidable problem in general, it
has applications in different domains such as program comprehension [15, 6, 18],
plagiarism detection [24] and malware detection [23]. When approximated by
program analysis, the resulting knowledge can also be used to drive advanced
program transformations such as removal of redundant functionality from source
code [14] and the automatic detection of a suitable parallelization strategy for a



given code fragment [10, 12]. Unsurprisingly, most current clone detection tech-
niques are based on somehow comparing the syntactical structure of two code
fragments and, consequently, are limited to detecting type-3 clones at best. Ex-
amples include the abstract syntax-tree based approaches for Erlang [9] and
Haskell [2], as well as our own work [4] in the context of logic programming.
Some approaches try to capture the essence of the algorithm at hand such as [1],
where algorithms are converted into a system of recurrence equations or [20,
21] where programs are abstracted by means of software metrics and program
schemas.

In previous work, we have devised a framework for detecting semantic clones
in logic programming [3]. The basic idea in that work is that two predicates are
considered semantic clones if they can each be transformed – by a sequence of
semantics-preserving program transformations – into a single common predicate
definition. This is in line with other approaches towards semantic clone detec-
tion [16] where fragments are often considered implementing the same function-
ality if one can be transformed in the other. This framework was generalized
to handle CLP in [11], which is of particular interest since CLP (or constrained
Horn clauses in general) has been recognized before as a suitable abstraction to
represent algorithmic logic [5]. As such, the framework for detecting semantic
clones is lifted to a framework for characterizing algorithmic equivalence between
the code fragments that were translated into CLP. However, in neither of these
works an attempt was made to formulate how the search for a suitable series
of program transformations could be performed or controlled. The question is
far from trivial, given the literally enormous search space involved and the fact
that the set of admissible transformations isn’t known, being one of the frame-
work’s parameters. The use of CLP as the representation language for the input
programs nevertheless allows us to restrict our attention to a limited number of
powerful transformations such as slicing and unfolding, whereas more traditional
approaches [12] usually consider a wide variety of more low-level transformations
as they are working on the program’s source code (such as renaming variables,
loop unrolling, array manipulations, etc.). In this work, we present an algorithm
capable of controlling the search for semantic clones when only the usual unfold-
ing and slicing transformations are allowed. When concretized, it thus represents
a workable decision procedure to test whether two given CLP fragments are (at
least partially) algorithmically equivalent.

2 Semantic Clones: Setting the Stage

While in practice CLP is typically used over a concrete domain, we will in this
work make abstraction of the concrete domain over which the constraints are
expressed. A program P is defined as a set of constraint Horn clause definitions
where each clause definition is of the form p(V1, . . . , Vn)← G with p(V1, . . . , Vn)
an atom called the head of the clause, and G a goal called the body of the clause.
When necessary, we will decompose the body G in a set of domain constraints
{C} and a set of atoms {B}. For simplicity we suppose that all arguments in



the head are variables (represented, as usual, by uppercase letters) and that all
clauses defining a predicate have the same head (i.e. use the same variables to
represent the arguments). A goal is a set of atoms and/or constraints. When we
say ”a predicate p”, it will be clear from the context whether we mean the symbol
p or the set of clauses defining p. When the arity of the predicate is relevant, we
will use p/n to represent the fact that the predicate p has n arguments.

As usual substitutions, being mappings from variables to terms, will be de-
noted by Greek letters. The application of a substitution θ to a term t will be
represented by tθ and the composition of substitutions θ and σ will be denoted
θσ. A renaming is a substitution mapping variables to variables. We say that
terms t1 and t2 are variants, denoted t1 ≈ t2 iff they are equal modulo a bijective
renaming.

While different semantics have been defined for CLP programs, for the re-
mainder of this paper we can stick to the basic non-ground declarative seman-
tics [7]. However, since the CLP predicates we wish to relate may originate from
different sources, they potentially have a different number of arguments and,
even if the predicates basically compute the same results, they may use different
argument positions for storing what may essentially be the same values. The
following definition captures what it means for two such predicates to compute
the same result. It states that both predicates must have a subsequence of their
argument positions (both sequences having the same size but containing possibly
different argument positions and not necessarily in the same order) such that
when the predicates are invoked with the corresponding arguments initialized
with the same terms, then each predicate computes the same result. This means
that for each pair of corresponding argument positions, the terms represented
by these arguments must be the same (modulo a variable renaming) both at the
moment the predicates are invoked (condition 1 in the definition) and at the
moment the predicates return (condition 2 in the definition). As for notation,
given a sequence R, we denote by Ri the i’th element of R.

Definition 1. Given CLP programs P1 and P2, let ps/ns and pq/nq denote
predicates in, respectively, P1 and P2 and let R and R′ denote sequences of
argument positions from respectively {1, . . . ns} and {1, . . . nq} such that |R| =
|R′| = n. We say that (ps, R) computes in P1 a subset of (pq, R

′) in P2 if and only
if for each call of the form ps(V0, . . . , Vns)θ with computed answer substitution
θ′, there also exists a call pq(V0, . . . , Vnq )σ with computed answer substitution σ′

such that the following holds for all k ∈ 1 . . . n:

1. (VRk)θ ≈ (VR′
k
)σ

2. (VRk)θθ′ ≈ (VR′
k
)σσ′

Moreover, we say that (ps, R) computes the same in P1 as does (pq, R
′) in P2,

denoted by JpsKP1

R = JpqKP2

R′ if and only if (ps, R) computes a subset of (pq, R
′)

and vice versa in their respective programs.

The above definition allows us to characterize predicates as computing the
same results, even if these predicates only partially exhibit the same behavior.



Indeed, what matters is that they compute the same values when restricted to
the arguments in R, respectively R′. The values computed by arguments not
comprised in either R or R′ are not concerned and may be different. When the
programs are clear from the context, we will drop the superscript notation and
simply write JpsKR = JpqKR′

Example 1. Consider the predicate p/3 computing in its third argument the
product of its first two arguments

p(A,B, P )← B = 1, P = A
p(A,B, P )← B′ = B − 1, p(A,B′, P ′), P = P ′ +A

and sp/4 computing in its third and four arguments the sum, respectively, the
product of its first two arguments:

sp(A,B, S, P )← A = 1, S = B + 1, P = B.
sp(A,B, S, P )← A′ = A− 1, sp(A′, B, S′, P ′), S = S′ + 1, P = P ′ +B.

Note how both predicates share the functionality of computing the product of
their first two arguments (although the role of A and B is switched). Therefore,
we have that JspK〈1,2,4〉 = JpK〈2,1,3〉.

In order to further define our notion of semantic clones, we first need to intro-
duce the following notions. First, we define the notion of an Rα-transformation
sequence as follows, based on [13].

Definition 2. Let P be a CLP program and R be a set of CLP program trans-
formations. Then a R-transformation sequence of P is a finite sequence of CLP
programs, denoted 〈P0, P1, . . . , Pn〉, where P0 = P and ∀i (0 < i ≤ n) : Pi is
obtained by the application of a transformation in R on Pi−1.

Given CLP programs P and Q, we will often use P  ∗R Q to represent the
fact that there exists anR-transformation sequence 〈P0, P1, . . . , Pn〉 with P0 = P
and Pn = Q. We are only interested in transformation sequences that preserve
the semantics of the original predicate, at least partially, i.e. with respect to a
given sequence of argument positions.

Definition 3. Let p and p′ be predicates, and R and R′ sequences of argu-
ment positions. A R-transformation sequence 〈P0, P1, . . . , Pn〉 correctly trans-
forms (p,R) into (p′, R′) if and only if (p,R) computes the same result in P0 as
(p′, R′) in Pn.

An example of transformation that could be part of the set R is the well-
known slicing transformation, defined as an operation removing the constraints
and/or atoms that concern a given argument of the predicate on which it is
applied (based on [19]):

Definition 4. Given the definition of a predicate p/n in a program P with head
p(X1, . . . , Xn). Then slicing the argument Xi ∈ {X1, . . . , Xn} of p/n consists
in removing from each clause of p/n all the constraints, atoms and arguments
having a (direct or indirect) impact on Xi.



The slicing operation, when part of R, allows to transform a predicate into
a lighter version where some of its arguments have been disregarded.

Example 2. Reconsider the definitions from Example 1 as well as a set of can-
didate transformations R containing at least the slicing transformation. It is
not hard to see that there exists an R-transformation sequence that correctly
transforms (sp,〈1, 2, 4〉) into (p,〈2, 1, 3〉). Indeed, it suffices to remove the third
argument (S) from sp and slice away the literals that manipulate S to obtain

sp(A,B, P )← A = 1, P = B.
sp(A,B, P )← A′ = A− 1, sp(A′, B, P ′), P = P ′ +B.

which is, basically, a variant of p where the role of the first and second argument
has been switched.

Definition 3 essentially defines what we will see as a correct transformation
sequence: one that preserves the computation performed by a predicate of inter-
est, at least with respect to a subset of its arguments. Note that the definition
is parametrized with respect to the set R of allowed transformations. Also note
that the definition is quite liberal, in the sense that it allows predicates to be
renamed, arguments (and thus computations) to be left out of the equation, and
arguments to be permuted. We are now in a position to define what we mean for
the predicates to be semantic clones, at least with respect to a subset of their
computations. The definition is loosely based on the notion of a semantic clone
pair [3].

Definition 5. Let p and q be predicates defined in, respectively the programs P
and Q, and let R and S be sequences of argument positions. Then we define
(p,R) and (q, S) R-clones in P and Q if and only if there exists a program T ,
predicate t and sequence of argument positions T such that P  ∗R T correctly
transforms (p,R) into (t, T ) and Q ∗R T correctly transforms (q, S) into (t, T ).

Example 3. Reconsider the definitions from Example 1. If we permute, in the
definition of p, the first and second arguments we obtain a predicate, say p′,
defined as follows:

p′(B,A, P )← B = 1, P = A
p′(B,A, P )← B′ = B − 1, p′(B′, A, P ′), P = P ′ +A

which is a variant of the predicate in which sp was transformed using the trans-
formation sequence from Example 2. Hence (sp,〈1, 2, 4〉) and (p,〈2, 1, 3〉) can be
considered a clone pair since each can be correctly transformed into (p′,〈1, 2, 3〉).

Our approach towards defining semantic clones is somewhat different from
other transformation-based approaches in the sense that we consider (parts of)
programs to be semantic clones if each of them can be transformed into a third,
common, program while preserving the semantics (with respect to a subset of
argument positions). As such, the third program captures the essence of the



computations performed by the two given programs. Essentialy this corresponds
to defining a family of semantic clones, depending on the instanciation of the
set of allowable transformations R.

In the following we study a first concrete incarnation of this framework for
semantic code clones detection. We therefore define Rα as the set composed only
of slicing and unfolding. The unfolding transformation [13] allows to replace
a call to a predicate with the body (or bodies) of the predicate in question
as defined in the program, thereby unrolling (i.e. unfolding) the atom under
scrutiny. Formally ([11]):

Definition 6. Given a program P , let c be a clause H ← {C}, {B} in P, Bs
one of the atoms in {B}, and
H1 ← {C1}, {L1}
...
Hn ← {Cn}, {Ln}
the (renamed apart) set of clauses in P such that C∧Ci∧(Bs = Hi) is satisfiable
for all 1 ≤ i ≤ n. Then unfolding the atom Bs in the clause c consists in replacing
c by the set of clauses

{
H ← {C ∧ Ci ∧ (Bs = Hi)}, {B′i|1 ≤ i ≤ n}

}
where

B′i represents the conjunction obtained by replacing, in B, the atom Bs by the
conjunction Li.

Example 4. Let us consider the following predicates

p(X,Y, Z)← X > Z, f(Y ).
f(A) ← A < 5.

Unfolding the atom f(Y ) in the first predicate transforms its clause into:

p(X,Y, Z)← X > Z, Y < 5.

In this clause, as the first and third arguments of p/3 are dependent on each
other, slicing X away results in the following predicate (the same holds if it is
Z that is sliced away):

p(Y )← Y < 5.

As suggested above, our framework instanciated with the set Rα defines a
class of clones, namely the pairs of predicates that can be reduced to a third,
common predicate through the application of only slicing and unfolding opera-
tions (modulo renaming). Although this class of clones is in essence restricted
by Rα, it still constitutes a representative categorization, slicing and unfolding
having proven to be powerful tools for transforming (constraint) logic programs.

3 Generalization-Driven Clone Detection Process

Searching whether two predicates p ∈ P0 and q ∈ Q0 are considered cloned
necessitates thus to construct two transformation sequences, one for each pro-
gram in the hope to arrive at a common program T . Two problems present



themselves: (1) even when limiting the allowed transformations to slicing and
unfolding, there might be a considerable number of ways in which a partial
transformation sequence 〈P0, . . . , Pk−1〉 can be extended into 〈P0, . . . , Pk〉. And
(2), since we don’t know the target program T in advance, it is hard to steer
the search process. To tackle these problems, we first organize the constructed
transformation sequences into a tree structure composed of the successive trans-
formed programs, where each node is labeled by the argument positions that are
preserved by the sequence of transformations thus far:

Definition 7. Given a program P0 along with a predicate p/n ∈ P0, a Rα-
transformation tree (sometimes abbreviated to Rα-tree) for p in P0 is a tree in
which each node has the form (P,R,R′) where P is a program and R and R′ are
sequences over {1, . . . , n}. The root of the tree is (P0, 〈1, . . . , n〉, 〈1, . . . , n〉) and
for each node (P,R,R′) it holds that P0  ∗Rα Pk correctly transforms (p,R) into
(p,R′). For a Rα-transformation tree τ we use leafs(τ) to represent the leaves
of the tree.

In other words, a Rα-transformation tree can be constructed by repeatedly
extending one of its leaves by transforming the program contained in the leaf
using one of the program transformations from Rα.

Next, we introduce the concept of abstraction that allows both to keep the
tree finite and to guide the choice of the successive transformations to apply.
We assume given a quasi-order � defined on goals such that for goals G and
G′, G � G′ denotes that G is more general than G′. We furthermore assume an
abstraction operator based on �.

Definition 8. Given a quasi-order � on goals, an abstraction operator A allows
to compute a generalization of two goals. Given goals G1, G2 then A(G1, G2)
represents a goal G such that G � G1 and G � G2.

While different incarnations of such a quasi-order can be defined, one typical
definition could be the following: G � G′ if and only if there exists a substitution
θ such that Gθ ⊆ G′. This is a straightforward adaption of the well-known “more
general than” relation defined on atoms and (ordered) conjunctions (e.g. ([17])
and the one we use in this work. Given an abstraction operator on goals, it is
possible to define the generalization of clauses and predicates as illustrated by
the following example.

Example 5. Consider the predicate s/3 computing in its third argument the sum
of its first two arguments.

s(A,B, S)← B = 0, S = A
s(A,B, S)← B′ = B − 1, s(A,B′, P ′), S = S′ + 1

Then it is not hard to see that

s′(A,B, S,N, I)← B = N,S = A
s′(A,B, S,N, I)← B′ = B − 1, s′(A,B′, S′, N, I), S = S′ + I



can be considered a generalization of the s/3 predicate defined in the present
example and the p/3 predicate defined in Example 1. Indeed, it can be obtained
by pairwise considering the predicates’ clauses, constructing a new (generalized)
clause by generalizing the respective body goals using the abstraction operator,
introducing (a subset of) the new variables as arguments and carefully renaming
these arguments so that all clauses share the same head.

In previous work, we have showed that computing these generalizations – in
particular the most specific, or most precise, generalization – is not a straightfor-
ward problem, and have proposed an algorithm for computing a generalization
that approximates the most specific generalization of two sets of atoms in poly-
nomially bounded time [22]. In this work we take such an abstraction algorithm
for granted (formalized by our abstraction operator A) and we study how such
an abstraction operator can be used for steering the search for Rα-clone pairs.
First we introduce the notion of a size measure, represented by |.|, being a func-
tion that defines the size of a syntactic construction (be it a goal, clause, or
predicate definition). The size measure is such that:

� for any syntactical constructs a and b that are variants of each other, then
|a| = |b|;

� for any syntactical constructs a and b, if a is more general than b (a � b),
then |a| ≤ |b|.

Such a size measure can be used to define a distance between two predicate
definitions as in the following definition.

Definition 9. Given an abstraction operator A and a size measure |.| measuring
the size of a predicate definition, then we define the distance between predicates
p and q as follows:

δ(p, q) = 1− 2× |A(p, q)|
|p|+ |q|

Since, by definition, |A(p, q)| ≤ |p| and |A(p, q)| ≤ |q|, we have that δ(p, q) is a
value between 0 and 1. If the generalization A(p, q) is empty (meaning there is no
pair of atoms that can be generalized by a single atom in the generalization), the
distance will be 1. On the other hand, the distance will be zero if the predicates
are variants of each other. Now, given programs P0 and Q0 and predicates p/n ∈
P0 and q/m ∈ Q0, we can use this distance to steer a process that transforms
p and q so that the distance between the (transformed) predicates becomes
smaller. If, at some point, the distance becomes zero, we can conclude that the
predicates are Rα-cloned, at least with respect to a subset of their arguments.
The process is depicted in Algorithm 1. The main loop of the algorithm will
extend the transformation trees τ1 for p in P0 and τ2 for q in Q0 and is repeated
as long as at least one pair of leafs from the respective trees gets closer than the
minimum distance obtained between leaves at the previous iteration. In other
words, the process is repeated as long as some progress is achieved in making
the predicate definitions closer through the application of transformations on the



versions of p and q contained in the tree leaves. Since the distances are bounded
by zero, the algorithm is necessarily terminating.

The idea of the algorithm is thus to select at each iteration the most promising
candidates for extension, which are the couples of leaves for which the defini-
tions of p and q are the closest in distance. For readability we use the nota-
tion closest leaves(τ1, τ2, n) to denote the n pairs ((Pi, Ri, R

′
i), (Qj , Sj , S

′
j)) in

leafs(τ1)× leafs(τ2) for which the corresponding definitions of p ∈ Pi and q ∈ Qj
are closest in distance. Slightly abusing notation, to refer to this distance we will
use δ((Pi, Ri, R

′
i), (Qj , Sj , S

′
j)).

The algorithm will extend each of those selected pairs by applying a judicious
transformation to pairwise corresponding clauses in the predicates. However, the
predicates can be composed of several clauses and we yet have to determine
which of those should be considered to be pairwise corresponding clauses. Once
again, we will tackle this problem by computing the pairs of clauses for which
the distance δ is minimal. For two nodes (Pi, Ri, R

′
i) and (Qj , Sj , S

′
j) we denote

the K closest independent pairs of clauses of p and q in the respective programs
Pi and Qj by closest clauses((Pi, Ri, R

′
i), (Qj , Sj , S

′
j),K). Each of these pairs of

clauses will be transformed in either Pi, Qj or both, giving rise to a new child
node of (Pi, Ri, R

′
i), respectively (Qj , Sj , S

′
j), or both. When unfolding is applied,

the argument sequences Ri and R′i (resp. Sj and S′j) will stay untouched, while
slicing might rearrange the sequences, resulting in R′i (resp. S′j) denoting the
new positions of the unsliced arguments in the target programs.

The trees constructed by the algorithm are correct Rα-trees in the sense of
Definition 7.

Proposition 1. Given predicates and programs p/n ∈ P0 and q/m ∈ Q0. Let
(τ1, τ2) be transformation trees created by Algorithm 1. Then for each node
(P,R,R′) in τ1 it holds that P0  ∗Rα P correctly transforms (p,R) into (p,R′)
and for each node (Q,S, S′) in τ2 it holds that Q0  ∗Rα Q correctly transforms
(q, S) into (q, S′).

Proof. We prove the result for τ1 by induction; the proof is analogous for τ2.
Note that the root of τ1, namely (P0, 〈1, . . . , n〉, 〈1, . . . , n〉) trivially satisfies the
condition in the proposition with the empty Rα-transformation sequence. Now
let (P,R,R′) be a non-root node in τ1 with parent node (Pi, Ri, R

′
i), such that

P0  ∗Rα Pi correctly transforms (p,Ri) into (p,R′i). The node (P,R,R′) has
either been obtained with the application of unfolding or by slicing on p in
(Pi, Ri, R

′
i). Unfolding being known to be a sound transformation in the most

general and usual sense, all the computations of p are strictly preserved after
having unfolded an atom in one of its clauses. Therefore in the case of unfolding,
the child node has the same argument sequences as its parent, i.e. R = Ri and
R′ = R′i. As for the slicing of an argument, it has by definition no incidence
on the remaining (untouched) arguments. In that case the algorithm sets R to
the subsequence of Ri denoting the arguments that are left unsliced, and R′ to
their new positions in the resulting predicate. It follows that the sequences of
arguments that are preserved after the application of the transformations are
correctly identified in the successive nodes, hence the result.



Algorithm 1 Construction of Rα-transformation trees τ1 and τ2
τ1 ← (P0, 〈1, . . . , n〉, 〈1, . . . , n〉)
τ2 ← (Q0, 〈1, . . . ,m〉, 〈1, . . . ,m〉)
δ1 ← 2
while δ(closest leaves(τ1, τ2, 1)) > 0 and δ(closest leaves(τ1, τ2, 1)) < δ1 do

δ1 ← δ(closest leaves(τ1, τ2, 1))
for all ((Pi, Ri, R

′
i), (Qj , Sj , S

′
j)) in closest leaves(N) do

extend((Pi, Ri, R
′
i), (Qj , Sj , S

′
j))

end for
end while

function extend((Pi, Ri, R
′
i), (Qj , Sj , S

′
j))

for all (Hp ← Gp, Hq ← Gq) in closest clauses((Pi, Ri, R
′
i), (Qj , Sj , S

′
j),K) do

G← A(Gp, Gq) such that Gp = Gθp ∪∆p and Gq = Gθq ∪∆q

if ∆p = ∅ then
apply slicing on q in such a way that literals from ∆q are eliminated

else if ∆q = ∅ then
apply slicing on p in such a way that literals from ∆p are eliminated

else if unfolding atoms in ∆p gives rise to variants of constraints in ∆q then
apply unfolding on these atoms

else if unfolding atoms in ∆q gives rise to variants of constraints in ∆p then
apply unfolding on these atoms

else
apply slicing on p and/or q in such a way that literals from ∆p and/or ∆q

are eliminated
end if
if p has been transformed then

Create (P,R,R′) as a child of (Pi, Ri, R
′
i) where P is a variation of Pi with

the transformed version of p replacing p, and where in case of unfolding, R = Ri and
R′ = R′

i and in case of slicing, R denotes the arguments that are left unsliced, and
R′ denotes their new positions in the transformed version of p.

end if
if q has been transformed then

Create (Q,S, S′) as a child of (Qj , Sj , S
′
j) similarly

end if
end for

end function



Note that the process is parametrized by N and K. If N = 1 the process
continues by transforming in each step the most promising couple of leaves.
While this might be efficient, it is in no way guaranteed that the search finds
the ”right” transformation sequences as it can be stuck in a local optimum.
Using a larger value for N is a rudimentary way of eliminating this problem.
The parameter K on the other hand allows to explore the transformation of
different pairs of clauses (at least when K > 1) in order to extend a single leaf.

While the main loop of Algorithm 1 details how the search is controlled (it
specifies how to guarantee termination while extending the N most promising
pairs of leafs in each round), the extend procedure specifies how to choose which
of slicing or unfolding to apply to a couple of clauses in two nodes (Pi, Ri, R

′
i)

and (Qj , Sj , S
′
j). In order to steer this selection, we search for the program

transformation that, again, lowers the distance between the current definitions
of predicates p and q as they are defined in Pi and Qj respectively. For this,
once more information from the generalization process can be used to guide the
selection. Indeed, the generalization G represents the part that is common to p
and q while ∆p and ∆q represent the parts specific to the current definition of
p, respectively q. Information from these structures can be exploited in order to
select the most promising transformation to apply on one of the predicates (i.e.
the transformation that will bring the two predicates’ definitions closer). Such
a strategy is outlined in the extend operation. The two first conditions check
whether the generalization A(p, q) is of maximal size. In that case, the only
meaningful way in which the search can continue is by slicing parts of the non-
empty delta. If neither ∆p nor ∆q are empty, the search should focus on making
∆p and ∆q more similar, in order to enlarge the common part G shared by both
clauses (with the use of unfolding) or, less preferably, render both ∆p and ∆q

smaller (by slicing). Although the extend function relies on the analysis of pairs
of corresponding clauses, its application effectively modifies the definition of the
considered predicate as a whole, yielding new nodes containing the modified
programs and the corresponding argument positions.

Corollary 1. Let P0 and Q0 be programs, p ∈ P0 and q ∈ Q0 predicates, τ1 and
τ2 the transformation trees created by Algorithm 1. Let closest leaves(τ1, τ2, 1) =
{((P,R,R′), (Q,S, S′))}. If δ((P,R,R′), (Q,S, S′)) = 0, then (p,R) and (q, S)
are Rα-clones in P0 and Q0.

Proof. If the distance between the two nodes is zero, the code of p in P and
q in Q is equivalent at least with respect to the argument sequences R and S.
Because of Proposition 1 we have that P0  ∗Rα P correctly transforms (p,R) into
(p,R′) and Q0  ∗Rα Q correctly transforms (q, S) into (q, S′). Now, p ∈ P and
q ∈ Q is essentially the same predicate (modulo renaming and reordering of the
arguments) and so they can be considered Rα-clones in the sense of Definition 5.

Given the limited search space explored by Algorithm 1, it is trivial to see
that the process is incomplete, in the sense that there exist Rα-clones that are
not detected by the process.



We conclude this section with the following (simplified) example serving as
an illustration for the ideas driving the process described above.

Example 6. Let us consider the following predicates defined in some program
P0:

max(X,Y, Z,M)← X ≥ Y,m(X,Z,M).
max(X,Y, Z,M)← Y > X,m(Y, Z,M).
m(A,B,M) ← A ≥ B,M = A.
m(A,B,M) ← B > A,M = B.

as well as the following predicates defined in some program Q0:

minmax(U, V,W,Min,Max)← U ≥ V,U ≥W,Max = U,min(V,W,Min).
minmax(U, V,W,Min,Max)← U ≥ V,W > U,Max = W,min(U, V,Min).
minmax(U, V,W,Min,Max)← V > U, V ≥W,Max = V,min(U,W,Min).
minmax(U, V,W,Min,Max)← V > U,W ≥ V,Max = W,min(U, V,Min).
min(A,B,M) ← A > B,M = B.
min(A,B,M) ← B ≥ A,M = A.

Suspicious that max/4 in P0 and minmax/5 in Q0 might exhibit some com-
mon functionality, let us apply Algorithm 1 to the two predicates. First, we
need to compute A(max,minmax), which yields (a variant of) the following
predicate:

g(G1, G2, G3, G4, G5)← X ≥ Y.
g(G1, G2, G3, G4, G5)← Y > X.

Obviously for each clause from max, ∆max (the differences between pairwise
clauses from max and g) is not empty, as the clauses from g harbor less infor-
mation than the corresponding clauses from max. The same holds for ∆minmax.
We will thus try to apply unfolding on one of the input predicates in the hope of
bringing the predicate definitions closer to each other. It is easy to see that un-
folding the calls to min/3 in minmax would not lead to the generalization being
any larger; on the other hand, unfolding the calls to m/3 in max is an adequate
way to enlarge the common parts of both predicates. Indeed, after unfolding all
the calls to m/3, the predicate max becomes defined as the following:

max(X,Y, Z,M)← X ≥ Y,X ≥ Z,M = X.
max(X,Y, Z,M)← X ≥ Y,Z > X,M = Z.
max(X,Y, Z,M)← Y > X, Y ≥ Z,M = Y.
max(X,Y, Z,M)← Y > X,Z > Y,M = Z.

Now computing the most specific generalization of this new version of the max
predicate and the unchanged minmax predicate yields (a variant of) the follow-
ing:

g(G1, G2, G3, G4, G5)← G1 ≥ G2, G1 ≥ G3, G5 = G1.
g(G1, G2, G3, G4, G5)← G1 ≥ G2, G3 > G1, G5 = G3.
g(G1, G2, G3, G4, G5)← G2 > G1, G2 ≥ G3, G5 = G2.
g(G1, G2, G3, G4, G5)← G2 > G1, G3 > G2, G5 = G3.



which is easily identified as a variant of max (with one variable, namely G4,
having no correspondence with a variable of max).

Therefore by computing the differences between g and our input predicates
we get empty ∆max values while the corresponding ∆minmax values contain the
calls to min/3. In this situation the extend procedure prescribes to use slicing
on those parts of minmax that are part of the ∆minmax sets (including the Min
variable only used in the call to min/3). This yields a new version of minmax:

minmax(U, V,W,Max)← U ≥ V,U ≥W,Max = U
minmax(U, V,W,Max)← U ≥ V,W > U,Max = W.
minmax(U, V,W,Max)← V > U, V ≥W,Max = V.
minmax(U, V,W,Max)← V > U,W ≥ V,Max = W.

This time, the most specific generalization of max and minmax is of maximal
size as it is a variant of both predicates. In this setting we have achieved a
distance of 0 between the predicates and their common generalization g, thus
exiting the loop of Algorithm 1 with the conclusion that (max, 〈1, 2, 3, 4〉) and
(minmax, 〈1, 2, 3, 5〉) are Rα-clones in P0 and Q0 (at least modulo renaming).

4 Conclusions and Future Work

While the theoretical framework of semantic clones in logic programming has
been established before, this work is – to the best of our knowledge – the first
attempt in devising a practical algorithm capable of searching for a series of
unfolding and slicing transformations that reduce two given CLP fragments to
a single code fragment representing the functionality that is common to the two
fragments; as such proving that the fragments are (at least to some extent) se-
mantic clones. Slicing and unfolding are powerful transformations; yet the set
Rα constitutes a somewhat restricted incarnation of the general set of allowable
transformations R defined as a parameter in the framework from [11]. Of course,
this limitation narrows down the degree of clone detection that can be achieved.
Working out a way to generalize our search procedure, e.g. by incorporating
other candidate transformations in the process, is a topic of ongoing and future
research. Transformations such as arguments reordering and folding [13] for in-
stance constitute a first natural extension of our set Rα, the consequences of
which yet have to be explored. In particular, studying transformations that are
specific to certain domains, such as numeric constraints normalization, is also
an open field for future research.

The search algorithm that we propose is essentially comprised of two control
levels: one level that controls the termination of the process and a second one
that considers what transformation to apply next. In that respect, it is not unlike
control techniques used in partial deduction [8] where a global control level is
used to ensure termination of the process and a local control is concerned by
constructing a suitable SLD tree for an atom or a conjunction of atoms.

A key ingredient in our approach is a generalization operator that allows
to generalize two goals and that can, additionally, be used to compute a dis-
tance between these goals. Generalization (or anti-unification) is a simple and



well-known syntactical process, at least as far as single atoms or (ordered) con-
junctions are concerned. It becomes more complicated when, as is the case in our
setting, sets of atoms and/or constraints need to be considered. We have for this
reason recently devised an approximation algorithm for computing most specific
generalizations of sets of literals [22], and aim to incorporate this further into the
algorithm developed above. Another topic of future work is to include higher-
order anti-unification capabilities in the algorithm, which is currently restricted
to first-order generalizations only.
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